Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 333: 118497, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38942156

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional medicinal formulation, Qifu-yin (QFY), has been widely prescribed for Alzheimer's disease (AD) treatment in China, yet the comprehensive mechanisms through which QFY mitigates AD pathology remain to be fully delineated. AIM OF THE STUDY: This study aimed to explore the therapeutic implications of QFY on the synaptic injury and oxidative stress in the hippocampus of APPswe/PS1dE9 (APP/PS1) mice, with a concerted effort to elucidate the molecular mechanisms related to synaptic preservation and memory improvement. MATERIALS AND METHODS: The components of QFY were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The neuroprotective effects of QFY was evaluated using six-month-old male APP/PS1 mice. Subsequent to a 15 days of QFY regimen, spatial memory was assessed utilizing the Morris water maze (MWM) test. Amyloid-beta (Aß) aggregation was detected via immunostaining, while the quantification of Aß1-40 and Aß1-42 was achieved through enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to investigate the synaptic structure and mitochondrial morphology. Golgi staining was applied to examine dendritic spine density. Reactive oxygen species (ROS), 3-nitrotyrosine (3-NT) and 4-hydroxy-nonenal (4-HNE) assays were employed to assess oxidative stress. The expression profiles of Aß metabolism-associated enzymes and the Keap1/Nrf2/ARE signaling pathway were determined by Western blot. RESULTS: A total of 20 principal compounds in QFY were identified. QFY mitigated memory deficits of APP/PS1 mice, including reducing escape latency and search distance and increasing the time and distance spent in the target quadrant. In addition, QFY increased platform crossings of APP/PS1 mice in the probe trial of MWM tests. TEM analysis showed that QFY increased synapse number in the CA1 region of APP/PS1 mice. Further studies indicated that QFY elevated the expression levels of Post synaptic density protein 95 (PSD95) and synaptophysin, and mitigated the loss of dendritic spine density in the hippocampus of APP/PS1 mice. QFY has been shown to ameliorated the structural abnormalities of mitochondria, including mitochondrial dissolution and degradation, up-regulate ATP synthesis and membrane potential in the hippocampus of APP/PS1 mice. Moreover, QFY activated the Keap1/Nrf2/ARE signaling pathway in the hippocampus of APP/PS1 mice, which might contribute to the neuroprotective effects of QFY. CONCLUSION: QFY activates the Keap1/Nrf2/ARE signaling, and protects against synaptic and mitochondrial dysfunction in APP/PS1 mice, proposing a potential alternative therapeutic strategy for AD management.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Neuroprotective Agents , Oxidative Stress , Signal Transduction , Animals , Male , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Antioxidant Response Elements/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Transgenic , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Presenilin-1/genetics , Signal Transduction/drug effects , Synapses/drug effects , Synapses/metabolism
2.
J Am Heart Assoc ; 13(11): e033981, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38818928

ABSTRACT

BACKGROUND: Oxidative stress plays a principal role in the pathogenesis of white matter hyperintensities (WMHs). The induction of heme oxygenase-1 (HO-1) gene in the brain represents 1 of the pivotal mechanisms to counteract the noxious effects of reactive oxygen species, and the transcriptional modulation of HO-1 induction depends on the length of a GT-repeat (GT)n in the promoter region. We investigated whether the HO-1 gene (GT)n polymorphism is associated with the risk of WMHs. METHODS AND RESULTS: A total of 849 subjects from the memory clinic were consecutively enrolled, and the HO-1 (GT)n genotype was determined. WMHs were assessed with the Fazekas scale and further divided into periventricular WMHs and deep WMHs (DWMHs). Allelic HO-1 (GT)n polymorphisms were classified as short (≤24 (GT)n), median (25≤[GT]n<31), or long (31≤[GT]n). Multivariate logistic regression analysis was used to evaluate the effect of the HO-1 (GT)n variants on WMHs. The number of repetitions of the HO-1 gene (GT)n ranged from 15 to 39 with a bimodal distribution at lengths 23 and 30. The proportion of S/S genotypes was higher for moderate/severe DWMHs than none/mild DWMHs (22.22% versus 12.44%; P=0.001), but the association for periventricular WMHs was not statistically significant. Logistic regression suggested that the S/S genotype was significantly associated with moderate/severe DWMHs (S/S versus non-S/S: odds ratio, 2.001 [95% CI, 1.323-3.027]; P<0.001). The HO-1 gene (GT)n S/S genotype and aging synergistically contributed to the progression of DWMHs (relative excess risk attributable to interaction, 6.032 [95% CI, 0.149-11.915]). CONCLUSIONS: Short (GT)n variants in the HO-1 gene may confer susceptibility to rather than protection from DWMHs, but not periventricular WMHs. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100045869.


Subject(s)
Genetic Predisposition to Disease , Heme Oxygenase-1 , Humans , Heme Oxygenase-1/genetics , Male , Female , Aged , Middle Aged , Polymorphism, Genetic , White Matter/diagnostic imaging , White Matter/pathology , Risk Factors , Magnetic Resonance Imaging , Promoter Regions, Genetic , Leukoencephalopathies/genetics , Leukoencephalopathies/diagnostic imaging , Phenotype
3.
Chem Commun (Camb) ; 51(54): 10819-22, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-26060845

ABSTRACT

Solutions of calcium chloride in mixed water and formamide are excellent electrolytes for capacitive charge storage in partially oxidised carbon nanotubes at unprecedented sub-zero-temperatures (e.g. 67% capacitance retention at -60 °C).

SELECTION OF CITATIONS
SEARCH DETAIL