Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Chaos ; 34(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953751

ABSTRACT

Cluster synchronization in synthetic networks of coupled chaotic oscillators is investigated. It is found that despite the asymmetric nature of the network structure, a subset of the oscillators can be synchronized as a cluster while the other oscillators remain desynchronized. Interestingly, with the increase in the coupling strength, the cluster is expanding gradually by recruiting the desynchronized oscillators one by one. This new synchronization phenomenon, which is named "scalable synchronization cluster," is explored theoretically by the method of eigenvector-based analysis, and it is revealed that the scalability of the cluster is attributed to the unique feature of the eigenvectors of the network coupling matrix. The transient dynamics of the cluster in response to random perturbations are also studied, and it is shown that in restoring to the synchronization state, oscillators inside the cluster are stabilized in sequence, illustrating again the hierarchy of the oscillators. The findings shed new light on the collective behaviors of networked chaotic oscillators and are helpful for the design of real-world networks where scalable synchronization clusters are concerned.

2.
Anal Chem ; 96(26): 10630-10638, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38912708

ABSTRACT

Paper-based lateral flow immunoassays (LFIAs) are cost-effective, portable, and simple methods for detection of diverse analytes, which however only provide qualitative or semiquantitative results and lack sufficient sensitivity. A combination of LFIA and electrochemical detection, namely, electrochemical lateral flow immunoassay (eLFIA), enables quantitative detection of analytes with high sensitivity, but the integration of external electrodes makes the system relatively expensive and unstable. Herein, the working, counter, and reference electrodes were prepared directly on the nitrocellulose membrane using screen printing, which remarkably simplified the structure of eLFIA and decreased the cost. Moreover, a horseradish peroxidase (HRP)-based electrochemical signal amplification strategy was used for further increasing the analytical sensitivity. HRP captured on the working electrode can catalyze the oxidation of tetramethylbenzidine (TMB) to form the TMB-TMBox precipitate on the electrode surface, which as an electrochemically active product can output an amplified current for quantification. We demonstrated that the eLFIA could detect low-abundant inflammatory biomarkers in human plasma samples with limits of detection of 0.17 and 0.54 pg mL-1 for interleukin-6 and C-reactive protein, respectively. Finally, a fully portable system was fabricated by integrating eLFIA with a flexible and wireless electrochemical workstation, realizing the point-of-care detection of interleukin-6.


Subject(s)
Biomarkers , C-Reactive Protein , Electrochemical Techniques , Electrodes , Interleukin-6 , Humans , Immunoassay/methods , Immunoassay/instrumentation , Electrochemical Techniques/instrumentation , Biomarkers/blood , Biomarkers/analysis , Interleukin-6/blood , Interleukin-6/analysis , C-Reactive Protein/analysis , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Limit of Detection , Inflammation/blood , Inflammation/diagnosis , Benzidines
3.
Adv Sci (Weinh) ; : e2405426, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881503

ABSTRACT

Base editors (BEs) are a recent generation of genome editing tools that couple a cytidine or adenosine deaminase activity to a catalytically impaired Cas9 moiety (nCas9) to enable specific base conversions at the targeted genomic loci. Given their strong application potential, BEs are under active developments toward greater levels of efficiency and safety. Here, a previously overlooked nCas9-centric strategy is explored for enhancement of BE. Based on a cytosine BE (CBE), 20 point mutations associated with nCas9-target interaction are tested. Subsequently, from the initial positive X-to-arginine hits, combinatorial modifications are applied to establish further enhanced CBE variants (1.1-1.3). Parallel nCas9 modifications in other versions of CBEs including A3A-Y130F-BE4max, YEE-BE4max, CGBE, and split-AncBE4max, as well as in the context of two adenine BEs (ABE), likewise enhance their respective activities. The same strategy also substantially improves the efficiencies of high-fidelity nCas9/BEs. Further evidence confirms that the stabilization of nCas9-substrate interactions underlies the enhanced BE activities. In support of their translational potential, the engineered CBE and ABE variants respectively enable 82% and 25% higher rates of editing than the controls in primary human T-cells. This study thus demonstrates a highly adaptable strategy for enhancing BE, and for optimizing other forms of Cas9-derived tools.

4.
Mol Neurobiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829513

ABSTRACT

Approximately one-third of postoperative patients are troubled by postoperative pain. Effective treatments are still lacking. The aim of this study is to investigate the role of brain-derived neurotrophic factor (BDNF)-VGF (non-acronymic) in dorsal root ganglia (DRG) in postoperative pain. Pain behaviors were assessed through measurements of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). Transcriptome analysis was conducted to identify potential targets associated with postoperative pain. Western blotting, immunofluorescence, and ELISA were employed to further detect macrophage activation as well as the expression of BDNF, VGF, TNF-α, IL-1ß, and IL-6. Results showed that plantar incision induced both mechanical and thermal hyperalgesia. Transcriptome analysis suggested that plantar incision caused upregulation of BDNF and VGF. The expressions of BDNF and VGF were upregulated in isolectin B4-positive (IB4+) and calcitonin gene-related peptide-positive (CGRP+) neurons, rather than neurofilament 200-positive (NF200+) neurons. The activation of BDNF-VGF pathway upregulated expression of IL-6, TNF-α, and IL-1ß and promoted the activation of macrophages. In conclusion, BDNF-VGF pathway aggravates acute postoperative pain by promoting macrophage activation and pro-inflammatory cytokine production, which may provide a new target for the treatment of postoperative pain.

5.
CNS Neurosci Ther ; 30(6): e14794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867379

ABSTRACT

BACKGROUND: Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS: This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS: Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS: The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.


Subject(s)
Brain Injuries , Microglia , Radiation Injuries , Microglia/radiation effects , Microglia/metabolism , Animals , Humans , Radiation Injuries/metabolism , Radiation Injuries/therapy , Brain Injuries/etiology , Brain Injuries/metabolism , Neuroinflammatory Diseases/etiology
6.
Mol Cell Biochem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717685

ABSTRACT

Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.

7.
Oncologist ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821532

ABSTRACT

Epidermal growth factor receptor kinase domain duplication (EGFR-KDD) is a rare, recurrent oncogenic variant that constitutively activates EGFR in non-small-cell lung cancer. Herein, we report the case of a 70-year-old man with resectable colorectal adenocarcinoma who underwent surgery followed by adjuvant therapy. He relapsed with multiple liver metastases and received standard chemotherapy until his disease became refractory. Comprehensive genomic profiling of his postoperative colorectal cancer tissue revealed EGFR-KDD. He was treated with an EGFR tyrosine kinase inhibitor (TKI), afatinib and achieved a partial response (- 55%) after 8 weeks; however, he developed massive malignant ascites after 13 weeks. Osimertinib, another EGFR-TKI, controlled his tumors for 9 months. Patient-derived cancer organoids from his malignant ascites confirmed sensitivity to EGFR-TKIs. The findings suggest that EGFR-TKIs can be a potential treatment option for this molecular subgroup.

8.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577961

ABSTRACT

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Subject(s)
Ecosystem , Trees , Trees/physiology , Global Warming , Climate Change , Climate
9.
Medicine (Baltimore) ; 103(8): e37191, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394505

ABSTRACT

RATIONALE: Previous studies have found that the main treatment of sinus arrest is pacemaker treatment. It is rare to have 12 s of sinus arrest after radiofrequency ablation, and whether a permanent pacemaker is implanted immediately in this case is not described in the guidelines. PATIENT CONCERNS: A 76-year-old male patient with persistent atrial fibrillation (AF) developed sinus arrest lasting 12 s in the early morning of the fourth day after using radiofrequency ablation for pulmonary vein isolation. DIAGNOSIS: The patient was diagnosed with AF and sinus arrest. INTERVENTIONS: The patient received cardiopulmonary resuscitation, intravenous injection of atropine 1 mg, and intravenous infusion of isoproterenol 1mg and immediately recovered consciousness thereafter. Approximately, 1.5 h later, the patient underwent surgery to install a temporary pacemaker in the right femoral vein. OUTCOMES: The patient had repeated episodes of sinus arrest after the implantation of a temporary pacemaker. After 3 weeks, the patient stabilized and was discharged. The patient was followed up for 1 year and did not experience any recurrence of sinus arrest or AF. LESSONS: We consider the potential for postoperative myocardial edema, injury to the sinoatrial node during the procedure, propafenone poisoning, and autonomic dysfunction as contributors to the occurrence of sinus arrest after radiofrequency ablation. When sinus arrest occurs after radiofrequency ablation, we can choose the appropriate treatment according to the patient's condition.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Catheter Ablation , Genetic Diseases, Inborn , Heart Arrest , Heart Atria/abnormalities , Heart Block , Radiofrequency Ablation , Male , Humans , Aged , Treatment Outcome , Catheter Ablation/adverse effects , Catheter Ablation/methods , Atrial Fibrillation/diagnosis , Heart Arrest/surgery
10.
Analyst ; 149(5): 1496-1501, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38315553

ABSTRACT

Cathodic electrochemiluminescence (ECL) of a luminol (or its analogues)-dissolved oxygen (O2) system is an ideal alternative to ECL of the traditional luminol-hydrogen peroxide (H2O2) system, which can efficiently avoid the self-decomposition of H2O2 at room temperature. However, the mechanism for the generation of cathodic ECL by the luminol (or its analogues)-O2 system is still ambiguous. Herein, we report the study of cathodic ECL generation by the L012-O2 system at a glassy carbon electrode (GCE). The types of reactive oxygen species (ROS) involved generated during ECL reactions were verified. A possible reaction mechanism for the system was proposed and the rate constants of related reactions were estimated. Furthermore, several intermediates of L012 involved in the proposed pathways were validated by electrochemistry-coupled mass spectrometry. Finally, the cathodic ECL system was successfully used for measuring the antioxidant capacity of commercial juice with Trolox as a standard.


Subject(s)
Antioxidants , Biosensing Techniques , Luminol/chemistry , Hydrogen Peroxide/chemistry , Luminescent Measurements/methods , Electrodes , Oxygen/chemistry , Electrochemical Techniques , Limit of Detection
11.
Planta ; 259(2): 47, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285274

ABSTRACT

MAIN CONCLUSION: Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.


Subject(s)
Craterostigma , Tracheophyta , Craterostigma/genetics , Desiccation , Plant Breeding , Cell Death , Water
12.
Environ Sci Ecotechnol ; 21: 100389, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38293646

ABSTRACT

The evasion of carbon dioxide (CO2) from lakes significantly influences the global carbon equilibrium. Amidst global climatic transformations, the role of Qingzang Plateau (QZP) lakes as carbon (C) sources or sinks remains a subject of debate. Furthermore, accurately quantifying their contribution to the global carbon budget presents a formidable challenge. Here, spanning half a century (1970-2020), we utilize a synthesis of literature and empirical field data to assess the CO2 exchange flux of QZP lakes. We find markedly higher CO2 exchange flux in the southeast lakes than that in the northern and western regions from 1970 to 2000. During this time, both freshwater and saltwater lakes served primarily as carbon sources. The annual CO2 exchange flux was estimated at 2.04 ± 0.37 Tg (Tg) C yr-1, mainly influenced by temperature fluctuations. The CO2 exchange flux patterns underwent a geographical inversion between 2000 and 2020, with increased levels in the west and decreased levels in the east. Notably, CO2 emissions from freshwater lakes diminished, and certain saltwater lakes in the QTP transitioned from carbon sources to sinks. From 2000 to 2020, the annual CO2 exchange flux from QZP lakes is estimated at 1.34 ± 0.50 Tg C yr-1, with solar radiation playing a more pronounced role in carbon emissions. Cumulatively, over the past five decades, QZP lakes have generally functioned as carbon sources. Nevertheless, the total annual CO2 emissions have declined since the year 2000, indicating a potential shift trend from being a carbon source to a sink, mirroring broader patterns of global climate change. These findings not only augment our understanding of the carbon cycle in plateau aquatic systems but also provide crucial data for refining China's carbon budget.

13.
Adv Sci (Weinh) ; 11(7): e2306203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38063781

ABSTRACT

Endogenous essential metal ions play an important role in many life processes, especially in tumor development and immune response. The approval of various metallodrugs for tumor therapy brings more attention to the antitumor effect of metal ions. With the deepening understanding of the regulation mechanisms of metal ion homeostasis in vivo, breaking intracellular metal ion homeostasis becomes a new means to inhibit the proliferation of tumor cells and activate antitumor immune response. Diverse nanomedicines with the loading of small molecular ion regulators or metal ions have been developed to disrupt metal ion homeostasis in tumor cells, with higher safety and efficiency than free small molecular ion regulators or metal compounds. This comprehensive review focuses on the latest progress of various intracellular metal ion homeostasis regulation-based nanomedicines in tumor therapy including calcium ion (Ca2+ ), ferrous ion (Fe2+ ), cuprous ion (Cu+ ), managanese ion (Mn2+ ), and zinc ion (Zn2+ ). The physiological functions and homeostasis regulation processes of ions are summarized to guide the design of metal ion regulation-based nanomedicines. Then the antitumor mechanisms of various ions-based nanomedicines and some efficient synergistic therapies are highlighted. Finally, the challenges and future developments of ion regulation-based antitumor therapy are also discussed, hoping to provide a reference for finding more effective metal ions and synergistic therapies.


Subject(s)
Metals , Zinc , Iron , Ions , Homeostasis/physiology
14.
Diabetes Obes Metab ; 26(2): 732-744, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37961034

ABSTRACT

AIMS: To investigate the role of FOXO1 in STAT3 activation and mitochondrial quality control in the diabetic heart. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats by a single intraperitoneal injection of 60 mg · kg-1 streptozotocin (STZ), while type 2 diabetes mellitus (T2DM) was induced in rats with a high-fat diet through intraperitoneal injection of 35 mg · kg-1 STZ. Primary neonatal mouse cardiomyocytes and H9c2 cells were exposed to low glucose (5.5 mM) or high glucose (HG; 30 mM) with or without treatment with the FOXO1 inhibitor AS1842856 (1 µM) for 24 hours. In addition, the diabetic db/db mice (aged 8 weeks) and sex- and age-matched non-diabetic db/+ mice were treated with vehicle or AS1842856 by oral gavage for 15 days at a dose of 5 mg · kg-1 · d-1 . RESULTS: Rats with T1DM or T2DM had excessive cardiac FOXO1 activation, accompanied by decreased STAT3 activation. Immunofluorescence and immunoprecipitation analysis showed colocalization and association of FOXO1 and STAT3 under basal conditions in isolated cardiomyocytes. Selective inhibition of FOXO1 activation by AS1842856 or FOXO1 siRNA transfection improved STAT3 activation, mitophagy and mitochondrial fusion, and decreased mitochondrial fission in isolated cardiomyocytes exposed to HG. Transfection with STAT3 siRNA further reduced mitophagy, mitochondrial fusion and increased mitochondrial fission in HG-treated cardiomyocytes. AS1842856 alleviated cardiac dysfunction, pathological damage and improved STAT3 activation, mitophagy and mitochondrial dynamics in diabetic db/db mice. Additionally, AS1842856 improved mitochondrial function indicated by increased mitochondrial membrane potential and adenosine triphosphate production and decreased mitochondrial reactive oxygen species production in isolated cardiomyocytes exposed to HG. CONCLUSIONS: Excessive FOXO1 activation during diabetes reduces STAT3 activation, with subsequent impairment of mitochondrial quality, ultimately promoting the development of diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Mice , Rats , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Mitochondria , Myocytes, Cardiac/metabolism , RNA, Small Interfering/therapeutic use
15.
Sci Total Environ ; 912: 168778, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008313

ABSTRACT

Drought is the driver for ecosystem production in semi-arid areas. However, the response mechanism of ecosystem productivity to drought remains largely unknown. In particular, it is still unclear whether drought limits the production via photosynthetic capacity or phenological process. Herein, we assess the effects of maximum seasonal photosynthesis, growing season length, and climate on the annual gross primary productivity (GPP) in vegetation areas of the Loess Plateau using multi-source remote sensing and climate data from 2001 to 2021. We found that maximum seasonal photosynthesis rather than growing season length dominates annual GPP, with above 90 % of the study area showing significant and positive correlation. GPP and maximum seasonal photosynthesis were positively correlated with self-calibrating Palmer Drought Severity Index (scPDSI), standardized precipitation and evapotranspiration index (SPEI) in >95 % of the study area. Structural equation model demonstrated that both drought indices contributed to the annual GPP by promoting the maximum seasonal photosynthesis. Total annual precipitation had a positive and significant effect on two drought indices, whereas the effects of temperature and radiation were not significant. Evidence from wood formation data also confirmed that low precipitation inhibited long-term carbon sequestration by decreasing the maximum growth rate in forests. Our findings suggest that drought limits ecosystem carbon sequestration by inhibiting vegetation photosynthetic capacity rather than phenology, providing a support for assessing the future dynamics of the terrestrial carbon cycle and guiding landscape management in semi-arid ecosystems.


Subject(s)
Carbon Sequestration , Ecosystem , Droughts , Forests , Seasons , Photosynthesis , Climate Change
16.
Plant Physiol ; 194(4): 2387-2399, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38114094

ABSTRACT

There are many factors that affect the yield of Chinese chestnut (Castanea mollissima), with single nut weight (SNW) being one of the most important. Leaf length is also related to Chinese chestnut yield. However, the genetic architecture and gene function associated with Chinese chestnut nut yield have not been fully explored. In this study, we performed genotyping by sequencing 151 Chinese chestnut cultivars, followed by a genome-wide association study (GWAS) on six horticultural traits. First, we analyzed the phylogeny of the Chinese chestnut and found that the Chinese chestnut cultivars divided into two ecotypes, a northern and southern cultivar group. Differences between the cultivated populations were found in the pathways of plant growth and adaptation to the environment. In the selected regions, we also found interesting tandemly arrayed genes that may influence Chinese chestnut traits and environmental adaptability. To further investigate which horticultural traits were selected, we performed a GWAS using six horticultural traits from 151 cultivars. Forty-five loci that strongly associated with horticultural traits were identified, and six genes highly associated with these traits were screened. In addition, a candidate gene associated with SNW, APETALA2 (CmAP2), and another candidate gene associated with leaf length (LL), CRYPTOCHROME INTERACTING BASIC HELIX-LOOP-HELIX 1 (CmCIB1), were verified in Chinese chestnut and Arabidopsis (Arabidopsis thaliana). Our results showed that CmAP2 affected SNW by negatively regulating cell size. CmCIB1 regulated the elongation of new shoots and leaves by inducing cell elongation, potentially affecting photosynthesis. This study provided valuable information and insights for Chinese chestnut breeding research.


Subject(s)
Genome-Wide Association Study , Plant Breeding , Genes, Plant/genetics , Plant Leaves/genetics , China
17.
Front Immunol ; 14: 1285801, 2023.
Article in English | MEDLINE | ID: mdl-38077392

ABSTRACT

γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αß T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , Humans , Immunotherapy , Antigens, Neoplasm , Antigen Presentation , Tumor Microenvironment
18.
BMC Geriatr ; 23(1): 719, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932677

ABSTRACT

BACKGROUND: Postoperative delirium (POD) is an important complication for older patients and recent randomised controlled trials have showed a conflicting result of the effect of deep and light anesthesia. METHODS: We included randomised controlled trials including older adults that evaluated the effect of anesthetic depth on postoperative delirium from PubMed, Embase, Web of Science and Cochrane Library. We considered deep anesthesia as observer's assessment of the alertness/ sedation scale (OAA/S) of 0-2 or targeted bispectral (BIS) < 45 and the light anesthesia was considered OAA/S 3-5 or targeted BIS > 50. The primary outcome was incidence of POD within 7 days after surgery. And the secondary outcomes were mortality and cognitive function 3 months or more after surgery. The quality of evidence was assessed via the grading of recommendations assessment, development, and evaluation approach. RESULTS: We included 6 studies represented 7736 patients aged 60 years and older. We observed that the deep anesthesia would not increase incidence of POD when compared with the light anesthesia when 4 related studies were pooled (OR, 1.40; 95% CI, 0.63-3.08, P = 0.41, I2 = 82%, low certainty). And no significant was found in mortality (OR, 1.12; 95% CI, 0.93-1.35, P = 0.23, I2 = 0%, high certainty) and cognitive function (OR, 1.13; 95% CI, 0.67-1.91, P = 0.64, I2 = 13%, high certainty) 3 months or more after surgery between deep anesthesia and light anesthesia. CONCLUSIONS: Low-quality evidence suggests that light general anesthesia was not associated with lower POD incidence than deep general anesthesia. And High-quality evidence showed that anesthetic depth did not affect the long-term mortality and cognitive function. SYSTEMATIC REVIEW REGISTRATION: CRD42022300829 (PROSPERO).


Subject(s)
Anesthetics , Delirium , Emergence Delirium , Humans , Middle Aged , Aged , Delirium/epidemiology , Anesthesia, General/adverse effects , Cognition , Postoperative Complications/etiology
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1309-1314, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37846677

ABSTRACT

OBJECTIVE: To detect the expression level of HK2 gene in the bone marrow of newly diagnosed patients with acute myeloid leukemia (AML) and investigate its influence on the clinical characteristics and prognosis. METHODS: The expression level of HK2 gene in the bone marrow of 90 newly diagnosed patients with AML that accompanying clinical characteristics and survival status were detected by RT-qPCR, and compared with 18 allogeneic hematopoietic stem cell transplantation (allo-HSCT) donors. The Chi-square test, Kaplan-Meier survival analysis, and Cox proportional hazards regression model were used to analyze the correlation of HK2 expression level with clinical characteristics and prognosis. RESULTS: Compared with allo-HSCT donors, the HK2 expression was significantly increased in newly diagnosed AML patients (P <0.01). Compared with patients with total response (OR, complete response + complete response with incomplete hematologic recovery) after 2 courses of induction chemotherapy, the expression of HK2 in patients without OR was significantly increased (P <0.05). There was a significant difference in the relative expression of HK2 between patients with and without OR after 2 courses of induction therapy (P <0.001). The median survival time of patients with high expression of HK2 was significantly shorter than that of patients with low expression of HK2 (P <0.05). The multivariate Cox proportional hazards regression analysis showed that prognostic stratification, the expression level of HK2, and whether two courses of induction therapy achieved OR were independent factors affecting the prognosis of AML patients (P <0.05). CONCLUSIONS: Compared with allo-HSCT donors, the expression level of HK2 gene is increased in the bone marrow of newly diagnosed AML patients. The prognosis of patients with high expression of HK2 is poor. The expression level of HK2 is an independent factor affecting the prognosis of AML patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Bone Marrow , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myeloid, Acute/therapy , Prognosis , Retrospective Studies , Transplantation, Homologous/adverse effects
20.
Lancet Healthy Longev ; 4(9): e450-e451, 2023 09.
Article in English | MEDLINE | ID: mdl-37659423
SELECTION OF CITATIONS
SEARCH DETAIL
...