Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 826
Filter
1.
Synth Syst Biotechnol ; 10(1): 39-48, 2025.
Article in English | MEDLINE | ID: mdl-39224148

ABSTRACT

Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.

2.
Microvasc Res ; 157: 104733, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236912

ABSTRACT

BACKGROUND: To quantify conjunctival microvascular characteristics obtained by optical coherence tomographic angiography (OCTA) and investigate their relationship with the presence and severity of coronary artery disease (CAD). METHODS: This cross-sectional study included 103 consecutive CAD patients confirmed by coronary angiography and 125 non-CAD controls. The temporal conjunctivas along the limbus of each participant were scanned using OCTA. Quantification of conjunctival microvasculature was performed by AngioTool software. The severity of the disease was evaluated using SYNTAX and Gensini scores. RESULTS: Compared to the controls, the CAD group exhibited significantly lower vessel area density (30.22 ± 3.34 vs. 26.70 ± 4.43 %, p < 0.001), lower vessel length density (6.39 ± 0.77 vs. 5.71 ± 0.89/m, p < 0.001), lower junction density (3.44 ± 0.56 vs. 3.05 ± 0.63/m, p < 0.001), and higher lacunarity (0.11 ± 0.03 vs. 0.14 ± 0.05, p < 0.001). Among all participants, lower vessel area density, lower vessel length density, lower junction density, and higher lacunarity were associated with greater odds of having CAD; the adjusted ORs (95 % confidence intervals) per one SD decrease were 2.71 (1.71, 4.29), 2.51(1.61, 3.90), 2.06 (1.39, 3.05), and 0.36 (0.23, 0.58), respectively. Among CAD patients, junction density was negatively associated with the Gensini score (r = -0.359, p = 0.037) and the Syntax score (r = -0.350, p = 0.042) in women but not in men (p > 0.05). CONCLUSIONS: Conjunctival microvascular characteristics were significantly associated with the presence of CAD. Junction density significantly associated with the severity of CAD among women patients.

3.
Int J Nanomedicine ; 19: 9273-9289, 2024.
Article in English | MEDLINE | ID: mdl-39282576

ABSTRACT

Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.


Subject(s)
Drug Carriers , Humans , Animals , Drug Carriers/chemistry , Injections, Intraocular , Retina , Retinal Diseases/therapy , Retinal Diseases/drug therapy , Nanoparticles/chemistry , Drug Delivery Systems/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Macular Degeneration/therapy
4.
J Control Release ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39288890

ABSTRACT

Neutrophil elastase (NE) is a protease released by activated neutrophils in the brain parenchyma after cerebral ischemia, which plays a pivotal role in the regulation of neutrophil extracellular traps (NETs) formation. The excess NETs could lead to blood-brain barrier (BBB) breakdown, overwhelming neuroinflammation, and neuronal injury. While the potential of targeting neutrophils and inhibiting NE activity to mitigate ischemic stroke (IS) pathology has been recognized, effective strategies that inhibit NETs formation remain under-explored. Herein, a biomimic multifunctional nanoplatform (HM@ST/TeTeLipos) was developed for active NE targeting and IS treatment. The core of the HM@ST/TeTeLipos consisted of sivelestat-loaded ditelluride-containing liposomes with ROS-responsive and NE-inhibiting properties. The outer shell was composed of platelet-neutrophil hybrid membrane vesicles (HMVs), which acted to hijack neutrophils and neutralize proinflammatory cytokines. Our studies revealed that HM@ST/TeTeLipos could effectively inhibit NE activity, thereby suppressing the release of NETs, impeding the activation of the AIM2 inflammasome, and consequently redirecting the immune response away from a pro-inflammatory M1 microglia phenotype. This resulted in enhanced neurovascular remodeling, reduced BBB disruption, and diminished neuroinflammation, ultimately promoting neuron survival. We believe that this innovative approach holds significant potential for improving the treatment of IS and various NE-mediated inflammatory diseases.

5.
Mediators Inflamm ; 2024: 1484806, 2024.
Article in English | MEDLINE | ID: mdl-39262415

ABSTRACT

Background: Colitis is a refractory intestinal inflammatory disease significantly affecting the quality of a patient's life and increasing the risk of exacerbation. The primary factors leading to colitis encompass infections, insufficient blood flow, and the buildup of collagen as well as white blood cells. Among various available therapeutics, 5-methoxytryptophan (5-MTP) has emerged as one of the protectants by inhibiting inflammatory damage. Nonetheless, there is no report on the role of 5-MTP in the treatment of colitis. Materials and Methods: To verify the anti-inflammatory effect of 5-MTP in vivo, we first constructed mouse model with dextran sulfate sodium-induced colitis. Furthermore, the macrophage infiltration and release of inflammatory factors through western blot (WB) and hematoxylin-eosin staining analyses were examined. Intestinal epithelial cell tight junction damage and apoptosis were investigated by WB analysis, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Finally, we examined the generation of cellular inflammation and analyzed the influence of 5-MTP on M1 polarization at the cellular level. Results: This study initially confirmed that 5-MTP possessed an excellent therapeutic effect on colitis. 5-MTP inhibits macrophage infiltration and the generation of inflammatory factors. In addition to its effects on immune cells, 5-MTP significantly inhibits intestinal epithelial cell tight junction damage and apoptosis in vivo. Moreover, it inhibits inflammation and M1 polarization response in vitro. Conclusion: 5-MTP counteracts excessive inflammation, thereby preventing intestinal epithelial tight junction damage. In addition, inhibition of apoptosis suggests that 5-MTP may be a potential therapeutic agent for colitis.


Subject(s)
Colitis , Dextran Sulfate , Intestinal Mucosa , Mice, Inbred C57BL , Tryptophan , Animals , Dextran Sulfate/toxicity , Colitis/chemically induced , Colitis/drug therapy , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , Inflammation/drug therapy , Male , Apoptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Humans , Disease Models, Animal , Tight Junctions/drug effects , Tight Junctions/metabolism
6.
Microbiol Res ; 289: 127881, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39241502

ABSTRACT

Mannitol, one of the most widespread sugar alcohols, has been integral to daily human life for two centuries. Global population growth and competition for freshwater, food, and land have prompted a shift in the fermentation industry from terrestrial to marine raw materials. Mannitol is a readily available carbohydrate in brown seaweed from the ocean and possess a higher reducing power than glucose, making it a promising substrate for biological manufacturing. This has spurred numerous explorations into converting mannitol into high-value chemicals. Researchers have engineered microorganisms to utilize mannitol in various synthetic biological applications, including: (1) employing mannitol as an inducer to control the activation and deactivation of genetic circuits; (2) using mannitol as a carbon source for synthesizing high-value chemicals through biomanufacturing. This review summarizes the latest advances in the application of mannitol in synthetic biology. AIM OF REVIEW: The aim is to present a thorough and in-depth knowledge of mannitol, a marine carbon source, and then use this carbon source in synthetic biology to improve the competitiveness of biosynthetic processes. We outlined the methods and difficulties of utilizing mannitol in synthetic biology with a variety of microbes serving as hosts. Furthermore, future research directions that could alleviate the carbon catabolite repression (CCR) relationship between glucose and mannitol are also covered. EXPECTED CONTRIBUTIONS OF REVIEW: Provide an overview of the current state, drawbacks, and directions for future study on mannitol as a carbon source or genetic circuit inducer in synthetic biology.

7.
Chem Commun (Camb) ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253897

ABSTRACT

Coulombic efficiency (CE) and rate capability are crucial parameters for advanced secondary batteries. Herein, for the first time, we report controllable amorphization and morphology engineering on mixed-valence Fe(II,III)-MOFs from the crystalline to amorphous state and micro-clustered to hollow nano-spherical geometry through valence manipulation by a dissolved oxygen-mediated pathway. The disordered structure and the hollow nanostructure can endow the MOFs with the highest initial CE (>80%) to date for MOF electrodes, and ultrafast and super-stable near-pseudocapacitance lithium storage. These findings can provide new ideas for the engineering of MOF systems for application in LIBs.

8.
Epigenetics ; 19(1): 2392050, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39169872

ABSTRACT

The cortical epigenetic clock was developed in brain tissue as a biomarker of brain aging. As one way to identify mechanisms underlying aging, we conducted a GWAS of cortical age. We leveraged postmortem cortex tissue and genotyping array data from 694 participants of the Rush Memory and Aging Project and Religious Orders Study (ROSMAP; 11000,000 SNPs), and meta-analysed ROSMAP with 522 participants of Brains for Dementia Research (5,000,000 overlapping SNPs). We confirmed results using eQTL (cortical bulk and single nucleus gene expression), cortical protein levels (ROSMAP), and phenome-wide association studies (clinical/neuropathologic phenotypes, ROSMAP). In the meta-analysis, the strongest association was rs4244620 (p = 1.29 × 10-7), which also exhibited FDR-significant cis-eQTL effects for CD46 in bulk and single nucleus (microglia, astrocyte, oligodendrocyte, neuron) cortical gene expression. Additionally, rs4244620 was nominally associated with lower cognition, faster slopes of cognitive decline, and greater Parkinsonian signs (n ~ 1700 ROSMAP with SNP/phenotypic data; all p ≤ 0.04). In ROSMAP alone, the top SNP was rs4721030 (p = 8.64 × 10-8) annotated to TMEM106B and THSD7A. Further, in ROSMAP (n = 849), TMEM106B and THSD7A protein levels in cortex were related to many phenotypes, including greater AD pathology and lower cognition (all p ≤ 0.0007). Overall, we identified converging evidence of CD46 and possibly TMEM106B/THSD7A for potential roles in cortical epigenetic clock age.


Subject(s)
Aging , Epigenesis, Genetic , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Female , Male , Aging/genetics , Aged , Aged, 80 and over , Quantitative Trait Loci , Cerebral Cortex/metabolism , Brain/metabolism
9.
Curr Med Imaging ; 20: e15734056307305, 2024.
Article in English | MEDLINE | ID: mdl-39185661

ABSTRACT

BACKGROUND: Alterations in ocular blood flow play an important role in the pathogenesis of diabetic macular edema; however, this remains unclear. OBJECTIVES: This study aimed to investigate ocular blood flow in eyes with or without diabetic macular edema using arterial spin labeling. METHODS: This cross-sectional study included 118 eyes of 65 patients with diabetic retinopathy analyzed between November 2018 and December 2019. We included a total of 53 eyes without diabetic macular edema (mean [SD] age, 57.83 [7.23] years; 29 men [54.7%]) and 65 eyes with diabetic macular edema (mean [SD] age, 60.11 [7.63] years; 38 men [58.5%]). Using a 3.0-T magnetic resonance imaging, participants were imaged with arterial spin labeling with multiple post-labeling delays. RESULTS: The mean ocular blood flow at post-labeling delays of 1.5 and 2.5 s was significantly lower in eyes with diabetic macular edema among patients with diabetic retinopathy compared with the remaining subgroups (P=0.022 and P <0.001, respectively). The mean ocular blood flow exhibited a significant decrease in eyes with diabetic macular edema when the post-labeling delay was set at 2.5 s in the nonproliferative and proliferative diabetic retinopathy groups, compared with the remaining subgroups (P=0.005 and P=0.002, respectively). The cutoff points of ocular blood flow at post-labeling delays of 1.5 s and 2.5 s were 9.40 and 11.10 mL/100 g/min, respectively. CONCLUSION: Three-dimensional pseudocontinuous arterial spin labeling can identify differences in the ocular blood flow of patients with diabetic eyes with and without diabetic macular edema.


Subject(s)
Diabetic Retinopathy , Macular Edema , Spin Labels , Humans , Macular Edema/diagnostic imaging , Macular Edema/physiopathology , Male , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/physiopathology , Middle Aged , Cross-Sectional Studies , Female , Aged , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Regional Blood Flow/physiology , Eye/blood supply , Eye/diagnostic imaging
10.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129336

ABSTRACT

INTRODUCTION: Dietary patterns are associated with dementia risk, but the underlying molecular mechanisms are largely unknown. METHODS: We used RNA sequencing data from post mortem prefrontal cortex tissue and annual cognitive evaluations from 1204 participants in the Religious Orders Study and Memory and Aging Project. We identified a transcriptomic profile correlated with the MIND diet (Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay) among 482 individuals who completed ante mortem food frequency questionnaires; and examined its associations with cognitive health in the remaining 722 participants. RESULTS: We identified a transcriptomic profile, consisting of 50 genes, correlated with the MIND diet score (p = 0.001). Each standard deviation increase in the transcriptomic profile score was associated with a slower annual rate of decline in global cognition (ß = 0.011, p = 0.003) and lower odds of dementia (odds ratio = 0.76, p = 0.0002). Expressions of several genes (including TCIM and IGSF5) appeared to mediate the association between MIND diet and dementia. DISCUSSION: A brain transcriptomic profile for healthy diets revealed novel genes potentially associated with cognitive health. HIGHLIGHTS: Why healthy dietary patterns are associated with lower dementia risk are unknown. We integrated dietary, brain transcriptomic, and cognitive data in older adults. Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet intake is correlated with a specific brain transcriptomic profile. This brain transcriptomic profile score is associated with better cognitive health. More data are needed to elucidate the causality and functionality of identified genes.

11.
medRxiv ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39185527

ABSTRACT

Advances have led to a greater understanding of the genetics of Alzheimer's Disease (AD). However, the gap between the predicted and observed genetic heritability estimates when using single nucleotide polymorphisms (SNPs) and small indel data remains. Large genomic rearrangements, known as structural variants (SVs), have the potential to account for this missing genetic heritability. By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing around 20,000 common SVs from 1,088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's Disease and Related Disorders (AD/ADRD) clinical and pathologic traits were examined. Given the limited sample size, no genome-wide significant association was found, but we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with AD/ADRD phenotypes (nominal P < 0.05). The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene. This SV was in high LD with the respective AD GWAS locus and was associated with multiple AD/ADRD phenotypes, including tangle density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22 kb deletion associated with depression in ROSMAP and bearing similar association patterns as AD GWAS SNPs at the IQCK locus. In addition, genome-wide scans allowed the identification of 7 SVs, with no LD with SNPs and nominally associated with AD/ADRD traits. This result suggests potentially new ADRD risk loci not discoverable using SNP data. Among these findings, we highlight a 5.6 kb duplication of coding regions of the gene C1orf186 at chromosome 1 associated with indices of cognitive impairment, decline, and resilience. While further replication in independent datasets is needed to validate these findings, our results support the potential roles of common structural variations in the pathogenesis of AD/ADRD.

12.
J Clin Transl Endocrinol ; 37: 100362, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39188269

ABSTRACT

Background: Cystic fibrosis (CF) is a multi-organ disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Individuals with CF often have gastrointestinal (GI) dysbiosis due to chronic inflammation and antibiotic use. Previous studies suggested a role for vitamin D in reversing the GI dysbiosis found in CF. Objective: To explore the potential role of a combination of high-dose oral cholecalciferol (vitamin D3) and fermentable dietary fiber, inulin, to impact bacterial composition, richness, and diversity of intestinal and airway microbiota in adults with CF. Methods: This was a 2 × 2 factorial, double-blinded, placebo-controlled, randomized, pilot clinical trial in which adults with CF received oral cholecalciferol (vitamin D3) (50,000 IU/week) and/or inulin (12 g/day) for 12 weeks. Thus, there were 4 study groups (n = 10 subjects per group); 1) placebo 2) vitamin D3 3) inulin 4) vitamin D3 plus inulin. Stool and sputum samples were collected at baseline (just before) and after the intervention and were analysed using 16S ribosomal RNA gene sequencing for gut and airway microbiota composition. Statistical analyses assessed alpha and beta diversity to evaluate microbial community changes. Results: Of a total of 254 screened participants, 40 eligible participants were randomized to one of the 4 treatment arms. Participants receiving vitamin D3 plus inulin exhibited greater changes in microbiome indexes in both intestinal and airway relative to those in the other study groups. Specific taxonomic changes supported the potential beneficial influence of this combination to mitigate both intestinal and airway dysbiosis in adults with CF. Conclusion: This pilot study established that the combination of oral vitamin D3 and the prebiotic inulin was well tolerated over 12 weeks in adults with CF and altered gut and airway bacterial communities. Future research appear warranted to define clinical outcomes and the role of microbiota changes therein with this approach.

13.
Gut Microbes ; 16(1): 2392872, 2024.
Article in English | MEDLINE | ID: mdl-39189608

ABSTRACT

We sought to better understand how intestinal microbiota confer protection against Clostridioides difficile (C. difficile) infection (CDI). We utilized gnotobiotic altered Schaedler flora (ASF) mice, which lack the abnormalities of germfree (GF) mice as well as the complexity and heterogeneity of antibiotic-treated mice. Like GF mice, ASF mice were highly prone to rapid lethal CDI, without antibiotics, while very low infectious doses resulted in chronic CDI. Administering such chronic CDI mice an undefined preparation of Clostridia lowered C. difficile levels by several logs. Importantly, such resolution of CDI was associated with colonization of Lachnospiraceae. Fractionation of the Clostridia population to enrich for Lachnospiraceae led to the appreciation that its CDI-impeding property strongly associated with a specific Lachnospiraceae strain, namely uncultured bacteria and archaea (UBA) 3401. UBA3401 was recalcitrant to being propagated as a pure culture but could be maintained in ASF mice, wherein it comprised up to about 50% of the intestinal microbiota, which was sufficient to generate a high-quality genomic sequence of this bacterium. Sequence analysis and ex vivo study of UBA3401 indicated that it had the ability to secrete substance(s) that directly impeded C. difficile growth. Moreover, in vivo administration of UBA3401/ASF feces provided strong protection to C. difficile challenge. Thus, UBA3401 may contribute to and/or provide a means to study microbiota-mediated CDI resistance.


Subject(s)
Clostridiales , Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Germ-Free Life , Animals , Mice , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Clostridioides difficile/physiology , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Gastrointestinal Microbiome/drug effects , Clostridiales/genetics , Clostridiales/growth & development , Mice, Inbred C57BL , Disease Models, Animal , Feces/microbiology , Female , Anti-Bacterial Agents/pharmacology
14.
Int Immunopharmacol ; 141: 112988, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39213867

ABSTRACT

The establishment and maintenance of a successful pregnancy rely heavily on maternal-fetal immune tolerance. Inflammatory and immune mechanisms during pregnancy bear a resemblance to those observed in tumor progression, with Treg cells exhibiting similar immunoregulatory functions in both contexts. Interferon regulatory factor 1 (IRF1) is implicated in modulating the immune milieu within tumors and influencing regulatory T (Treg) cell differentiation. However, the precise association between IRF1 and the onset of preeclampsia (PE) remains unclear. In our investigation, we identified trophoblasts as a significant source of IRF1 expression at the maternal-fetal interface through immunofluorescence analysis. Moreover, heightened levels of IRF1 expression were detected in both placental tissues and peripheral blood samples obtained from PE patients, concomitant with an imbalance in the Th17/Treg ratio. In the peripheral circulation, a notable inverse correlation was observed between IRF1 mRNA levels and Foxp3 mRNA, a transcription factor specific to Treg cells. IRF1 mRNA expression showed a positive association with systolic blood pressure and a negative association with serum albumin levels. Furthermore, co-culturing naïve T cells with supernatants from HTR-8/SV neo cells overexpressing IRF1 resulted in diminished differentiation of T cells into Treg cells. In summary, our study indicates elevated IRF1 expression in the peripheral blood and trophoblast cells of PE patients. Elevated IRF1 in trophoblast cells hinders the differentiation of maternal Treg cells, disrupting maternal-fetal immune tolerance and contributing to PE pathogenesis. Additionally, IRF1 expression correlates with disease severity, suggesting its potential as a novel sensitive target in PE.


Subject(s)
Cell Differentiation , Interferon Regulatory Factor-1 , Pre-Eclampsia , T-Lymphocytes, Regulatory , Trophoblasts , Humans , Pre-Eclampsia/immunology , Female , Pregnancy , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , T-Lymphocytes, Regulatory/immunology , Adult , Trophoblasts/immunology , Trophoblasts/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Placenta/immunology , Placenta/metabolism , Th17 Cells/immunology , Immune Tolerance , Cells, Cultured
15.
J Hazard Mater ; 478: 135613, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39180994

ABSTRACT

This investigation explored the potential of utilizing alkali-treated corn cob (CC) as a solid carbon source to improve NOX and SO2 removal from flue gas. Leaching experiments unveiled a hierarchy of chemical oxygen demand release capacity: 0.03 mol/L alkali-treated CC > 0.02 mol/L > 0.01 mol/L > 0.005 mol/L > control. In NOX and SO2 removal experiments, as the inlet NOX concentration rose from 300 to 1000 mg/m3, the average NOX removal efficiency increased from 58.56 % to 80.00 %. Conversely, SO2 removal efficiency decreased from 99.96 % to 91.05 %, but swiftly rebounded to 98.56 % by day 18. The accumulation of N intermediates (NH4+, NO3-, NO2-) increased with escalating inlet NOX concentration, while the accumulation of S intermediates (SO42-, SO32-, S0) varied based on shifts in the population of functional bacteria. The elevation in inlet NOX concentration stimulated the growth of denitrifying bacteria, enhancing NOX removal efficiency. Concurrently, the population of nitrate-reducing sulfur-oxidizing bacteria and sulfate-reducing bacteria expanded, aiding in the accumulation of S0 and the removal of SO2. The comparison experiments on carbon sources confirmed the comparable NOX and SO2 removal efficiencies of alkali-treated CC and glucose, yet underscored differences in intermediates accumulation due to distinct genus structures.


Subject(s)
Air Pollutants , Alkalies , Carbon , Sulfur Dioxide , Zea mays , Zea mays/chemistry , Sulfur Dioxide/chemistry , Carbon/chemistry , Air Pollutants/chemistry , Alkalies/chemistry , Nitrogen Oxides/chemistry , Biological Oxygen Demand Analysis
16.
Nat Commun ; 15(1): 6646, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103319

ABSTRACT

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for transcriptome-wide association studies (TWAS). To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies show that SR-TWAS improves power, due to increased training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real studies identify 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations are found for these significant risk genes.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Machine Learning , Parkinson Disease , Transcriptome , Humans , Alzheimer Disease/genetics , Parkinson Disease/genetics , Genome-Wide Association Study/methods , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Substantia Nigra/metabolism , Dementia/genetics
17.
Cell Mol Gastroenterol Hepatol ; : 101393, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179176

ABSTRACT

BACKGROUND & AIMS: The protection provided by rotavirus (RV) vaccines is highly heterogeneous among individuals. We hypothesized that microbiota composition might influence RV vaccine efficacy. METHODS: First, we examined the potential of segmented filamentous bacteria (SFB) colonization to influence RV vaccine efficacy in mice. Next, we probed the influence of human microbiomes on RV vaccination via administering mice fecal microbial transplants (FMTs) from children with robust or minimal RV vaccine responsiveness. Post-FMT, mice were subjected to RV vaccination followed by RV challenge. RESULTS: SFB colonization induced a phenotype that was reminiscent of RV vaccine failure (ie, failure to generate RV antigens and, consequently, anti-RV antibodies following RV vaccination resulting in proneness to RV challenge after SFB levels diminished). FMTs from children to mice recapitulated donor vaccination phenotype. Specifically, mice receiving FMTs from high-responsive vaccinees copiously shed RV antigens and robustly generated anti-RV antibodies following RV vaccination. Concomitantly, such mice were impervious to RV challenge. In contrast, mice receiving FMTs from children who had not responded to RV vaccination exhibited only modest responses to RV vaccination and, concomitantly, remained prone to RV challenge. Microbiome analysis ruled out a role for SFB but suggested involvement of Clostridium perfringens. Oral administration of cultured C. perfringens to gnotobiotic mice partially recapitulated the RV vaccine non-responder phenotype. Analysis of published microbiome data found C. perfringens abundance in children modestly associated with RV vaccine failure. CONCLUSION: Microbiota composition influences RV vaccine efficacy with C. perfringens being one, perhaps of many, potential contributing taxa.

18.
Adv Sci (Weinh) ; : e2404476, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206755

ABSTRACT

Super-enhancers (SEs) have been recognized as key epigenetic regulators underlying cancer stemness and malignant traits by aberrant transcriptional control and promising therapeutic targets against human cancers. However, the SE landscape and their roles during head and neck squamous cell carcinoma (HNSCC) development especially in cancer stem cells (CSCs) maintenance remain underexplored yet. Here, we identify leukemia inhibitory factor (LIF)-SE as a representative oncogenic SE to activate LIF transcription in HNSCC. LIF secreted from cancer cells and cancer-associated fibroblasts promotes cancer stemness by driving SOX2 transcription in an autocrine/paracrine manner, respectively. Mechanistically, enhancer elements E1, 2, 4 within LIF-SE recruit SOX2/SMAD3/BRD4/EP300 to facilitate LIF transcription; LIF activates downstream LIFR-STAT3 signaling to drive SOX2 transcription, thus forming a previously unknown regulatory feedback loop (LIF-SE-LIF/LIFR-STAT3-SOX2) to maintain LIF overexpression and CSCs stemness. Clinically, increased LIF abundance in clinical samples correlate with malignant clinicopathological features and patient prognosis; higher LIF concentrations in presurgical plasma dramatically diminish following cancer eradication. Therapeutically, pharmacological targeting LIF-SE-LIF/LIFR-STAT3 significantly impairs tumor growth and reduces CSC subpopulations in xenograft and PDX models. Our findings reveal a hitherto uncharacterized LIF-SE-mediated auto-regulatory loop in regulating HNSCC stemness and highlight LIF as a novel noninvasive biomarker and potential therapeutic target for HNSCC.

19.
Int J Pharm ; 663: 124552, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39111355

ABSTRACT

Methamphetamine (METH) addiction can damage the central nervous system, resulting in cognitive impairment and memory deficits. Low target effects have limited the utility of anti-addiction drugs because the presence of the blood-brain barrier hinders the effective delivery of drugs to the brain. Angiopep-2 can recognize and target low-density lipoprotein receptor-associated protein 1 (LRP-1) on the surface of cerebral capillary endothelial cells, causing cross-cell phagocytosis, and thus has high blood-brain barrier transport capacity. Resveratrol (RSV) has been found to be a neuroprotective agent in many nervous system diseases. In our study, we modified Angiopep-2 on the surface of the erythrocyte membrane to obtain a modified erythrocyte membrane (Ang-RBCm) and coated RSV-loaded poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) nanoparticles with Ang-RBCm (Ang-RBCm@RSVNPs) to treat METH addiction. Our results showed that Ang-RBCm@RSVNPs can penetrate the blood-brain barrier and accumulate in the brain better than free RSV. Besides, mice treatetd with Ang-RBCm@RSVNPs showed less preference to METH-paired chamber and no noticeable tissue toxicity or abnormality was found in H&E staining images. Electrophysiological experiments demonstrated Ang-RBCm@RSVNPs could elevate synaptic plasticity impaired by METH. These indicated that Ang-RBCm@RSVNPs has better anti-addiction and neuroprotective effects. Therefore, Ang-RBCm@RSVNPs has great potential in the treatment of METH addiction.


Subject(s)
Blood-Brain Barrier , Methamphetamine , Nanoparticle Drug Delivery System , Resveratrol , Resveratrol/administration & dosage , Resveratrol/pharmacokinetics , Resveratrol/pharmacology , Resveratrol/chemistry , Animals , Methamphetamine/administration & dosage , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Nanoparticle Drug Delivery System/chemistry , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Peptides/administration & dosage , Peptides/chemistry , Nanoparticles/administration & dosage , Substance-Related Disorders/drug therapy , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods
20.
Alzheimers Dement ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215503

ABSTRACT

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked Black Americans (BA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from BA (n = 306), LA (n = 326), or BA and LA (n = 4) brain donors plus non-Hispanic White (n = 252) and other (n = 20) ethnic groups, to establish a foundational dataset enriched for BA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: The inclusion of traditionally underrepresented groups in multi-omics studies is essential to discovering the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD. HIGHLIGHTS: Accelerating Medicines Partnership in Alzheimer's Disease Diversity Initiative led brain tissue profiling in multi-ethnic populations. Brain multi-omics data is generated from Black American, Latin American, and non-Hispanic White donors. RNA, whole genome sequencing and tandem mass tag proteomicsis completed and shared. Multiple brain regions including caudate, temporal and dorsolateral prefrontal cortex were profiled.

SELECTION OF CITATIONS
SEARCH DETAIL