Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Article in English | MEDLINE | ID: mdl-38988002

ABSTRACT

Food waste is an enormous challenge, with implications for the environment, society, and economy. Every year around the world, 1.3 billion tons of food are wasted or lost, and food waste-associated costs are around $2.6 trillion. Waste upcycling has been shown to mitigate these negative impacts. This study's optimized pomelo-peel biomass-derived porous material-based triboelectric nanogenerator (PP-TENG) had an open circuit voltage of 58 V and a peak power density of 254.8 mW/m2. As porous structures enable such triboelectric devices to respond sensitively to external mechanical stimuli, we tested our optimized PP-TENG's ability to serve as a self-powered sensor of biomechanical motions. As well as successfully harvesting sufficient mechanical energy to power light-emitting diodes and portable electronics, our PP-TENGs successfully monitored joint motions, neck movements, and gait patterns, suggesting their strong potential for use in healthcare monitoring and physical rehabilitation, among other applications. As such, the present work opens up various new possibilities for transforming a prolific type of food waste into value-added products and thus could enhance long-term sustainability while reducing such waste.

2.
BMC Plant Biol ; 24(1): 653, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987678

ABSTRACT

BACKGROUND: Walnut anthracnose caused by Colletotrichum gloeosporioides seriously endangers the yield and quality of walnut, and has now become a catastrophic disease in the walnut industry. Therefore, understanding both pathogen invasion mechanisms and host response processes is crucial to defense against C. gloeosporioides infection. RESULTS: Here, we investigated the mechanisms of interaction between walnut fruits (anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts) and C. gloeosporioides at three infection time points (24hpi, 48hpi, and 72hpi) using a high-resolution time series dual transcriptomic analysis, characterizing the arms race between walnut and C. gloeosporioides. A total of 20,780 and 6670 differentially expressed genes (DEGs) were identified in walnut and C. gloeosporioides against 24hpi, respectively. Generous DEGs in walnut exhibited opposite expression patterns between F26 and F423, which indicated that different resistant materials exhibited different transcriptional responses to C. gloeosporioides during the infection process. KEGG functional enrichment analysis indicated that F26 displayed a broader response to C. gloeosporioides than F423. Meanwhile, the functional analysis of the C. gloeosporioides transcriptome was conducted and found that PHI, SignalP, CAZy, TCDB genes, the Fungal Zn (2)-Cys (6) binuclear cluster domain (PF00172.19) and the Cytochrome P450 (PF00067.23) were largely prominent in F26 fruit. These results suggested that C. gloeosporioides secreted some type of effector proteins in walnut fruit and appeared a different behavior based on the developmental stage of the walnut. CONCLUSIONS: Our present results shed light on the arms race process by which C. gloeosporioides attacked host and walnut against pathogen infection, laying the foundation for the green prevention of walnut anthracnose.


Subject(s)
Colletotrichum , Juglans , Plant Diseases , Juglans/microbiology , Juglans/genetics , Colletotrichum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , RNA-Seq , Fruit/microbiology , Fruit/genetics , Transcriptome , Gene Expression Regulation, Plant , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Disease Resistance/genetics
3.
Autophagy ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869076

ABSTRACT

Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.

4.
Nat Commun ; 15(1): 5157, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886340

ABSTRACT

The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.


Subject(s)
Endoplasmic Reticulum , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Biological Transport , Oligosaccharides/metabolism , Dolichol Phosphates/metabolism , Dolichol Phosphates/genetics , Lipid Bilayers/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Intracellular Membranes/metabolism , Lipopolysaccharides
5.
Food Res Int ; 190: 114550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945594

ABSTRACT

Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.


Subject(s)
Aspergillus flavus , Edible Grain , Fusarium , Ultraviolet Rays , Fusarium/radiation effects , Fusarium/growth & development , Aspergillus flavus/growth & development , Aspergillus flavus/radiation effects , Edible Grain/microbiology , Spores, Fungal/radiation effects , Spores, Fungal/growth & development , Food Contamination/prevention & control , Food Irradiation/methods , Food Microbiology , Reactive Oxygen Species/metabolism
6.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892508

ABSTRACT

Circulating 25-hydroxyvitamin D (25(OH)D) significantly influences endothelial function. This study assessed the correlation between serum 25(OH)D and endothelial function using the vascular reactivity index (VRI) in patients with type 2 diabetes mellitus (T2DM). Fasting blood samples from 102 T2DM participants and VRI were assessed. Patients were divided into three categories based on VRI: low (VRI < 1.0), intermediate (1.0 ≤ VRI < 2.0), and good (VRI ≥ 2.0). Among these patients, 30 (29.4%) had poor, 39 (38.2%) had intermediate, and 33 (32.4%) exhibited good vascular reactivity. Higher serum fasting glucose (p = 0.019), glycated hemoglobin (p = 0.009), and urinary albumin-to-creatinine ratio (p = 0.006) were associated, while lower prevalence of hypertension (p = 0.029), lower systolic blood pressure (p = 0.027), lower diastolic blood pressure (p < 0.001), and lower circulation 25(OH)D levels (p < 0.001) were associated with poor vascular reactivity. Significant independent associations between diastolic blood pressure (p = 0.002) and serum 25(OH)D level (p < 0.001) and VRI were seen in T2DM patients according to multivariable forward stepwise linear regression analysis. Serum 25(OH)D positively correlated with VRI values, and lower levels of serum 25(OH)D were linked to endothelial dysfunction in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Endothelium, Vascular , Vitamin D , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Vitamin D/analogs & derivatives , Vitamin D/blood , Male , Female , Middle Aged , Aged , Endothelium, Vascular/physiopathology , Blood Pressure , Cross-Sectional Studies , Blood Glucose/analysis , Blood Glucose/metabolism , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Hypertension/blood
7.
ACS Appl Mater Interfaces ; 16(23): 29600-29609, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832656

ABSTRACT

Hydrogel tubes made of sodium alginate (SA) have potential applications in drug delivery, soft robots, biomimetic blood vessels, tissue stents, and other fields. However, the continuous preparation of hollow SA hydrogel tubes with good stability and size control remains a huge challenge for chemists, material scientists, and medical practitioners. Inspired by the plant apical growth strategy, a new method named soft cap-guided growth was proposed to produce SA hydrogel tubes. Due to the introduction of inert low gravity substances, such as air and heptane, into the extrusion needle in front of calcium chloride solution to form a soft cap, the SA hydrogel tubes with controllable sizes were fabricated rapidly and continuously without using a template through a negative gravitropism mechanism. The SA hydrogel tubes had good tensile strength, high burst pressure, and good cell compatibility. In addition, hydrogel tubes with complex patterns were conveniently created by controlling the motion path of a soft cap, such as a rotating SA bath or magnetic force. Our research provided a simple innovative technique to steer the growth of hydrogel tubes, which made it possible to mass produce hydrogel tubes with controllable sizes and programmable patterns.


Subject(s)
Alginates , Hydrogels , Alginates/chemistry , Hydrogels/chemistry , Tensile Strength
8.
Cancer Manag Res ; 16: 651-661, 2024.
Article in English | MEDLINE | ID: mdl-38919872

ABSTRACT

Aim: This article aimed to find appropriate pancreatic cancer (PC) patients to treat with Gemcitabine with better survival outcomes by detecting hENT1 levels. Methods: We collected surgical pathological tissues from PC patients who received radical surgery in our hospital from September 2004 to December 2014. A total of 375 PC tissues and paired adjacent nontumor tissues were employed for the construction of 4 tissue microarrays (TMAs). The quality of the 4 TMAs was examined by HE staining. We performed immunohistochemistry analysis to evaluate hENT1 expression in the TMAs. Moreover, we detected hENT1 expression level and proved the role of hENT1 in cell proliferation, drug resistance, migration and invasion in vivo and vitro. Results: The results indicated that low hENT1 expression indicated a significantly poor outcome in PC patients, including shortened DFS (21.6±2.8 months versus 36.9±4.0 months, p<0.001) and OS (33.6±3.9 versus 39.6±3.9, p=0.004). Meanwhile, patients in stage I/II of TNM stage had a longer OS (40.2±3.4 versus 15.4±1.7, p=0.002) and DFS (31.0±3.1 versus 12.4±1.9, p=0.016) than patients in stage III/IV. Patients in M0 stage had a longer OS (39.7±3.4 versus 16.2±1.9, p=0.026) and DFS(30.7±3.0 versus 11.8±2.2, p=0.031) than patients in M1 stage, and patients with tumors not invading the capsule had a better DFS than those with tumor invasion into the capsule (30.8±3.0 versus 12.6±2.3, p=0.053). Patients with preoperative CA19-9 values ≤467 U/mL have longer DFS than that of patients who had preoperative CA19-9 values >467 U/mL (37.9±4.1 versus 22.9±4.0, p=0.04). In the subgroup analysis, a high hENT1 expression level was related to a longer OS(39.4±4.0 versus 31.5±3.9, p=0.001) and DFS(35.7±4.0 versus 20.6±2.7; p<0.0001) in the Gemcitabine subgroup. Conclusion: PC patients with high hENT1 expression have a better survival outcomes when receiving Gemcitabine. hENT1 expression can be a great prognostic indicator for PC patients to receive Gemcitabine treatment.

9.
Sci Rep ; 14(1): 10698, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730235

ABSTRACT

Janus group-III chalcogenide monolayers and based heterostructures with breaking vertical structural symmetry offer additional prospects in the upcoming high-performance photoelectric devices. We studied the geometrical, electronic, and photoelectric properties of Janus group-III chalcogenide monolayers and heterostructures. The most energy favorable stacking design of ten vertical heterostructures are considered. The results showed that the Janus Se-In-Ga-S and S-In-Ga-Se monolayers exhibit semiconducting characteristics with the band gaps of 1.295 eV and 1.752 eV, respectively. Furthermore, the different stacking configurations and surface termination at interface can realize the transition of band alignment between type I and type II due to the interlayer coupling. Moreover, we systematically investigated the photoelectric properties of Janus group-III chalcogenide heterostructures and predicated an optimized power conversion efficiency of 16.2%. These findings can aid in comprehending the customized characteristics of Janus group-III chalcogenide heterostructures, offering theoretical guidance for creating innovative photoelectric devices.

10.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732044

ABSTRACT

High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and hub-gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC.


Subject(s)
Aneuploidy , Chromosomes, Human, Pair 8 , DNA Copy Number Variations , Disease Progression , Ovarian Neoplasms , Female , Humans , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Chromosomes, Human, Pair 8/genetics , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
11.
J Inorg Biochem ; 257: 112599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749082

ABSTRACT

The urgent global health problem of antimicrobial resistance (AMR) calls for the discovery of new antibiotics with innovative modes of action while considering the low toxicity to mammalian cells. This paper proposes a novel strategy for designing antibiotics with selective bacterial toxicity by exploiting the positional differences of electron transport chains (ETC) in bacterial and mammalian cells. The focus is on cytochrome c (cyt C) and its maturation system in E. coli. The catalytic oxidative activity of metallophthalocyanine (MPc), which have a distinctive M-N4 structure, is being investigated. Unlike previous applications based on light-activated reactive oxygen species (ROS) generation, this study exploits the ability of MPcs to oxidize Fe2+ to Fe3+ in cyt C and catalyze the formation of disulfide bonds between cysteine residues to interfere with cyt C maturation, disrupt the bacterial respiratory chain and selectively kills bacteria. In contrast, in mammalian cells, these MPcs are located in the lysosomes and cannot access the ETC in the mitochondria, thus achieving selective bacterial toxicity. Two MPcs that showed effective antibacterial activity in a wound infection model were identified. This study provides a valuable reference for the design of novel antibiotics based on M-N4-based metal complex molecules.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Indoles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Indoles/chemistry , Indoles/pharmacology , Animals , Cytochromes c/metabolism , Cytochromes c/chemistry , Isoindoles , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Mice , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Oxidation-Reduction
12.
Sci Total Environ ; 935: 173441, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38782289

ABSTRACT

Rice is a staple food for more than half of humanity, and 90 % of rice is grown and consumed in Asia. However, paddy rice cultivation creates an ideal environment for the production and release of methane (CH4). How to estimate regional CH4 emissions accurately and how to mitigate them efficiently have been of key concern. Here, with a machine learning method, we investigate the spatiotemporal changes, the major controlling factors and mitigation potentials of paddy rice CH4 emissions across Monsoon Asia at a resolution of 0.1° (∼10 km). Spatially CH4 emissions are highly heterogeneous, with the Indo-Gangetic Plain, Deltas of the Mekong, and Yangtze River Basin as the hotspots. Nationwide, China, India, Bangladesh and Vietnam are the major emitters. Straw applied on season is a critical controlling factor for CH4 emission in rice fields. The single-season rice contributes to over 80 % of the total emissions. CH4 emissions from Monsoon Asia have notably declined since 2007. Three mitigation strategies, including water management techniques, off-season straw return, and straw to biochar, may reduce CH4 emissions by 27.66 %, 23.78 %, and 21.79 %, respectively, with the most effective strategy being rice cultivation type-specific and environment-specific. Our findings gain new insights into CH4 emissions and mitigations across Monsoon Asia, providing evidence to adopt precise mitigation strategies based on rice cultivation types and local environment.

13.
Biomed Pharmacother ; 174: 116542, 2024 May.
Article in English | MEDLINE | ID: mdl-38574620

ABSTRACT

Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.


Subject(s)
14-3-3 Proteins , Apoptosis , Autophagy , Catechin , Catechin/analogs & derivatives , Ferroptosis , Myocardial Reperfusion Injury , Catechin/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Animals , Autophagy/drug effects , Apoptosis/drug effects , Ferroptosis/drug effects , 14-3-3 Proteins/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Mice , Cardiotonic Agents/pharmacology , Cell Survival/drug effects , Rats, Sprague-Dawley
14.
ACS Appl Mater Interfaces ; 16(17): 22604-22613, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38627235

ABSTRACT

A novel double-network conductive hydrogel based on lithium acetate/gelatin/polyacrylamide (PAAM) was synthesized by heating-cooling and subsequent γ-ray radiation-induced polymerization and cross-linking. Owing to the hydrogen bonding interaction between lithium acetate, physical cross-linked gelatin, and chemical cross-linked PAAM, the resultant hydrogel exhibited high tensile strength (1260 kPa), high ionic conductivity (35.2 mS cm-1), notch-insensitivity (tensile strength 415 kPa, elongation at break 872% with transverse notch), and extensive strain monitoring range (0.15-800%) under optimum conditions. The lithium acetate/gelatin/polyacrylamide hydrogel strain sensor attached to the skin can sensitively monitor the subtle movements of the human body. The strain sensor based on the resultant hydrogel with transverse notch can still work for 1200 cycles, due to that the covalent-cross-linked PAAm chain bridges the cracks and stabilizes the deformation, while the physical-cross-linked gelatin was unzipped to make the blunting of notch. The conductive hydrogel with high-sensitivity and high stability is expected to be used as materials for the preparation of flexible strain sensors in the future.

15.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667187

ABSTRACT

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Carbapenems , Endodeoxyribonucleases , beta-Lactamases , Carbapenems/pharmacology , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Biosensing Techniques , Drug Resistance, Bacterial/genetics
16.
Bioresour Technol ; 401: 130740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677385

ABSTRACT

Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.


Subject(s)
Oxidation-Reduction , Bacteria/metabolism , Bacteria/genetics , Ammonium Compounds/metabolism , Microbiota , Multigene Family , Phylogeny , Proteomics/methods , Metagenomics/methods , Anaerobiosis , Multiomics
17.
Ergonomics ; : 1-22, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651950

ABSTRACT

Mental load is a major cause of human-induced accidents. In this study, an explosive impact sensitivity experiment was used to induce mental load. A combination of subjective questionnaires and objective prospective time-distance tests were used to judge whether subjects experienced mental load. Four indicators, namely, ß, γ, mean pupil diameter, and fixation time were selected by statistical analysis and PCA for the construction of a mental load assessment model. The study found that the occipital lobe was the most sensitive to mental load, especially ß and γ bands. Lastly, it was found that subjects showed different degrees of mental load for the same mental load induction task. The results of the study are applicable to the evaluation and monitoring of the mental characteristics of workers and provide a scientific basis for adjusting the mental load of workers over time to reduce the rate of accidents and enhance production efficiency.


Mental load is the main cause of human-induced accidents. This study used an explosive impact sensitivity experiment to induce mental load in subjects. We found that the mean pupil diameter and fixation time, as well as the beta and gamma bands in the occipital lobe were most sensitive to mental load.

18.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38561102

ABSTRACT

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , Animals , Mice , Myocytes, Cardiac , Resveratrol/pharmacology , Voltage-Dependent Anion Channel 1 , Ischemia , Hypoxia , Myocardial Reperfusion Injury/prevention & control , Reperfusion
19.
Chemosphere ; 356: 141829, 2024 May.
Article in English | MEDLINE | ID: mdl-38548081

ABSTRACT

Nanoplastics (NPs) is a novel plastic contaminant that could be taken up by cells and lead to severe biotoxicity toxicity, NPs in cells can cause oxidant damage by inducing reactive oxygen species (ROS) production and lead to acute inflammation. As a major ROS which related to many kinds of physiological and pathological processes, superoxide anion radical (O2•-) could be utilized as a signal of oxidant damage effected by NPs exposure in vivo. To detect the toxic damage mechanism of NPs, a fluorescence probe Bcy-OTf has been developed to monitor O2•- fluctuations content in cells and aquatic organisms after exposure to NPs. The probe has a high sensitivity (LOD = 20 nM) and a rapid responsive time (within 6 min), and it has high selectivity and low cytotoxicity to analysis the levels of the endogenous O2•-. Endogenous O2•- induced by NPs in living cells, Daphnia magna and larval zebrafish were analyzed. Moreover, the results confirmed the key role of MAPK and NF-κB pathway in NPs stimulation mechanisms in cells. This study indicated that Bcy-OTf can precisely assess the fluctuations of endogenous O2•-, which has potential for applying in further analysis mechanisms of NPs biological risks.


Subject(s)
Daphnia , Fluorescent Dyes , Larva , Oxidation-Reduction , Reactive Oxygen Species , Superoxides , Water Pollutants, Chemical , Zebrafish , Animals , Daphnia/drug effects , Superoxides/metabolism , Fluorescent Dyes/chemistry , Larva/drug effects , Larva/metabolism , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Humans , Microplastics/toxicity , Nanoparticles/toxicity , Nanoparticles/chemistry , NF-kappa B/metabolism , Daphnia magna
20.
Sci Total Environ ; 924: 171530, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38453092

ABSTRACT

Anaerobic ammonium-oxidation (anammox) bacteria play a crucial role in global nitrogen cycling and wastewater nitrogen removal, but they share symbiotic relationships with various other microorganisms. Functional divergence and adaptive evolution of uncultured bacteria in anammox community remain underexplored. Although shotgun metagenomics based on short reads has been widely used in anammox research, metagenome-assembled genomes (MAGs) are often discontinuous and highly contaminated, which limits in-depth analyses of anammox communities. Here, for the first time, we performed Pacific Biosciences high-fidelity (HiFi) long-read sequencing on the anammox granule sludge sample from a lab-scale bioreactor, and obtained 30 accurate and complete metagenome-assembled genomes (cMAGs). These cMAGs were obtained by selecting high-quality circular contigs from initial assemblies of long reads generated by HiFi sequencing, eliminating the need for Illumina short reads, binning, and reassembly. One new anammox species affiliated with Candidatus Jettenia and three species affiliated with novel families were found in this anammox community. cMAG-centric analysis revealed functional divergence in general and nitrogen metabolism among the anammox community members, and they might adopt a cross-feeding strategy in organic matter, cofactors, and vitamins. Furthermore, we identified 63 mobile genetic elements (MGEs) and 50 putative horizontal gene transfer (HGT) events within these cMAGs. The results suggest that HGT events and MGEs related to phage and integration or excision, particularly transposons containing tnpA in anammox bacteria, might play important roles in the adaptive evolution of this anammox community. The cMAGs generated in the present study could be used to establish of a comprehensive database for anammox bacteria and associated microorganisms. These findings highlight the advantages of HiFi sequencing for the studies of complex mixed cultures and advance the understanding of anammox communities.


Subject(s)
Anaerobic Ammonia Oxidation , Sewage , Oxidation-Reduction , Sewage/microbiology , Bacteria/genetics , Bacteria/metabolism , Nitrogen/metabolism , Bioreactors/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...