Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Commun Biol ; 7(1): 797, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956406

ABSTRACT

The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Kluyveromyces , Kluyveromyces/genetics , Gene Editing/methods , Plasmids/genetics , Synthetic Biology/methods , Heme/metabolism , Heme/genetics , Heme/biosynthesis
2.
Sci Bull (Beijing) ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38910106

ABSTRACT

Many clustered regularly interspaced short palindromic repeat and CRISPR-associated protein 12b (CRISPR-Cas12b) nucleases have been computationally identified, yet their potential for genome editing remains largely unexplored. In this study, we conducted a GFP-activation assay screening 13 Cas12b nucleases for mammalian genome editing, identifying five active candidates. Candidatus hydrogenedentes Cas12b (ChCas12b) was found to recognize a straightforward WTN (W = T or A) proto-spacer adjacent motif (PAM), thereby dramatically expanding the targeting scope. Upon optimization of the single guide RNA (sgRNA) scaffold, ChCas12b exhibited activity comparable to SpCas9 across a panel of nine endogenous loci. Additionally, we identified nine mutations enhancing ChCas12b specificity. More importantly, we demonstrated that both ChCas12b and its high-fidelity variant, ChCas12b-D496A, enabled allele-specific disruption of genes harboring single nucleotide polymorphisms (SNPs). These data position ChCas12b and its high-fidelity counterparts as promising tools for both fundamental research and therapeutic applications.

3.
Fundam Res ; 4(2): 300-306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933516

ABSTRACT

Mechanically interlocked polymers (MIPs) are promising candidates for the construction of elastomeric materials with desirable mechanical performance on account of their abilities to undergo inherent rotational and translational mechanical movements at the molecular level. However, the investigations on their mechanical properties are lagging far behind their structural fabrication, especially for linear polyrotaxanes in bulk. Herein, we report stretchable poly[2]rotaxane elastomers (PREs) which integrate numerous mechanical bonds in the polymeric backbone to boost macroscopic mechanical properties. Specifically, we have synthesized a hydroxy-functionalized [2]rotaxane that subsequently participates in the condensation polymerization with diisocyanate to form PREs. Benefitting from the peculiar structural and dynamic characteristics of the poly[2]rotaxane, the representative PRE exhibits favorable mechanical performance in terms of stretchability (∼1200%), Young's modulus (24.6 MPa), and toughness (49.5 MJ/m3). Moreover, we present our poly[2]rotaxanes as model systems to understand the relationship between mechanical bonds and macroscopic mechanical properties. It is concluded that the mechanical properties of our PREs are mainly determined by the unique topological architectures which possess a consecutive energy dissipation pathway including the dissociation of host-guest interaction and consequential sliding motion of the wheel along the axle in the [2]rotaxane motif.

4.
PLoS Biol ; 22(6): e3002680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865309

ABSTRACT

CRISPR-Cas12a, often regarded as a precise genome editor, still requires improvements in specificity. In this study, we used a GFP-activation assay to screen 14 new Cas12a nucleases for mammalian genome editing, successfully identifying 9 active ones. Notably, these Cas12a nucleases prefer pyrimidine-rich PAMs. Among these nucleases, we extensively characterized Mb4Cas12a obtained from Moraxella bovis CCUG 2133, which recognizes a YYN PAM (Y = C or T). Our biochemical analysis demonstrates that Mb4Cas12a can cleave double-strand DNA across a wide temperature range. To improve specificity, we constructed a SWISS-MODEL of Mb4Cas12a based on the FnCas12a crystal structure and identified 8 amino acids potentially forming hydrogen bonds at the target DNA-crRNA interface. By replacing these amino acids with alanine to disrupt the hydrogen bond, we tested the influence of each mutation on Mb4Cas12a specificity. Interestingly, the F370A mutation improved specificity with minimal influence on activity. Further study showed that Mb4Cas12a-F370A is capable of discriminating single-nucleotide polymorphisms. These new Cas12a orthologs and high-fidelity variants hold substantial promise for therapeutic applications.


Subject(s)
Alleles , CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Humans , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Animals , Protein Engineering/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Polymorphism, Single Nucleotide , Mutation , DNA/metabolism , DNA/genetics , HEK293 Cells
5.
Asian J Psychiatr ; 97: 104080, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788320

ABSTRACT

This study investigates specific changes in brain function during cognitive and emotional tasks in patients with schizophrenia and a history of violence (VSCZ) compared with non-violent patients with schizophrenia and healthy controls. A comprehensive literature search was conducted at the Web of Science, Medline, and PubMed. Ten studies met the inclusion criteria. In which, eight studies compared brain activation between patients with VSCZ and non-violent patients with schizophrenia, and the former exhibited increased activation at the middle occipital gyrus and rectus compared with the latter. Seven studies compared brain activation between patients with VSCZ and controls, and the former exhibited increased activation at the anterior cingulate cortex, cerebellum VI region, lingual gyrus and fusiform. Subgroup analysis in five studies performing emotional tasks revealed that patients with VSCZ showed increased activation at the middle occipital gyrus compared with non-violent patients with schizophrenia. Our findings suggest that abnormal emotion perception and regulation significantly contribute to the increased risk of violence in patients with schizophrenia. Notably, the middle occipital gyrus and rectus emerge as key neurophysiological correlates associated with this phenomenon.


Subject(s)
Schizophrenia , Violence , Humans , Schizophrenia/physiopathology , Brain/physiopathology , Brain/diagnostic imaging , Magnetic Resonance Imaging
7.
Cardiovasc Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646676

ABSTRACT

BACKGROUND: In patients with diabetic microvascular complications, decreased perfusion or vascular occlusion, caused by reduced vascular diameter, is a common characteristic that will lead to insufficient blood supply. Yet, the regulatory mechanism and effective treatment approach remain elusive. METHODS AND RESULTS: Our initial findings revealed a notable decrease in the expression of human AQP1 in both diabetic human retina samples (49 healthy vs. 54 diabetic samples) and high-glucose-treated human retinal microvascular endothelial cells. Subsequently, our investigations unveiled a reduction in vascular diameter and compromised perfusion within zebrafish embryos subjected to high glucose treatment. Further analysis indicated a significant downregulation of two aquaporins, aqp1a.1 and aqp8a.1, which are highly enriched in ECs and are notably responsive to hyperglycemic conditions. Intriguingly, the loss of function of aqp1a.1 and/or aqp8a.1 resulted in a reduction of intersegmental vessel diameters, effectively mirroring the phenotype observed in the hyperglycemic zebrafish model.The overexpression of aqp1a.1/aqp8a.1 in zebrafish ECs led to notable enlargement of microvascular diameters. Moreover, the reduced vessel diameters resulting from high-glucose treatment were effectively rescued by the overexpression of these aquaporins. Additionally, both aqp1a.1 and apq8a.1 were localized in the intracellular vacuoles in cultured ECs as well as the ECs of sprouting ISVs, and the loss of Aqps caused the reduction of those vacuoles, which was required for lumenization. Notably, while the loss of AQP1 did not impact EC differentiation from human stem cells, it significantly inhibited vascular formation in differentiated ECs. CONCLUSION: EC-enriched aquaporins regulate the diameter of blood vessels through an intracellular vacuole-mediated process under hyperglycemic conditions. These findings collectively suggest that aquaporins expressed in ECs hold significant promise as potential targets for gene therapy aimed at addressing vascular perfusion defects associated with diabetes.

8.
Angew Chem Int Ed Engl ; 63(27): e202400989, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38623921

ABSTRACT

Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 MPa; 22.93 MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69 MPa; 63.61 MPa; 141.50 MPa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.

9.
Oncol Lett ; 27(6): 259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646492

ABSTRACT

Lung cancer is the most common cancer in the world due to its high incidence and recurrence. Genetic instability is one of the main factors leading to its occurrence, development and poor prognosis. Decreased xeroderma pigmentosum group C (XPC) expression notably enhances the stem cell properties of lung cancer cells and increases their proliferation and migration. Additionally, patients with lung cancer and low XPC expression had a poor prognosis. The purpose of the present study was to analyze the effect of XPC and IFN-γ on the clinical prognosis of patients with non-small cell lung cancer (NSCLC). Lung adenocarcinoma specimens were collected from a total of 140 patients with NSCLC. Additionally, from these 140 patients, 48 paracarcinoma tissue specimens were also collected, which were later used to construct tissue microarrays. The expression of XPC and IFN-γ in cancer tissues and in paraneoplastic tissues was detected using immunohistochemistry. The prognosis and overall survival of patients were determined through telephone follow-up. The results showed a positive correlation between expression of XPC and IFN-γ in NSCLC. Additionally, high expression of both markers was associated with a favorable prognosis in patients with NSCLC. The aforementioned findings suggest that the expression of XPC and IFN-γ has prognostic value in clinical practice and is expected to become a marker for clinical application.

10.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473861

ABSTRACT

Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Animals , Ammonia , Dysbiosis , Penaeidae/genetics , Hepatopancreas
11.
Int J Biol Macromol ; 266(Pt 1): 131107, 2024 May.
Article in English | MEDLINE | ID: mdl-38527677

ABSTRACT

Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Curcumin , Gastrointestinal Microbiome , Hydroxyethyl Starch Derivatives , Microspheres , Oxidative Stress , Curcumin/pharmacology , Curcumin/chemistry , Animals , Colitis, Ulcerative/drug therapy , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Mice , Hydroxyethyl Starch Derivatives/chemistry , Hydroxyethyl Starch Derivatives/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Colon/microbiology , Inflammation/drug therapy , Disease Models, Animal , Drug Carriers/chemistry , Male
12.
World J Psychiatry ; 14(2): 276-286, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464765

ABSTRACT

BACKGROUND: Major depression disorder (MDD) constitutes a significant mental health concern. Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults, with a corresponding increased risk of suicide. In studying brain dysfunction associated with MDD in adole-scents, research on brain white matter (WM) is sparse. Some researchers even mistakenly regard the signals generated by the WM as noise points. In fact, studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations. The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear. AIM: To explore potential abnormalities in WM functional signals in adolescents with MDD. METHODS: This study involved 48 adolescent patients with MDD and 31 healthy controls (HC). All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview (MINI) suicide inventory. In addition, a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects' image data. The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity, followed by a two-sample t-test between the MDD and HC groups. Independent component analysis (ICA) was also used to evaluate the WM functional signal. Pearson's correlation was performed to assess the relationship between statistical test results and clinical scales. RESULTS: Compared to HC, individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body, left posterior limb of the internal capsule, right superior corona radiata, and bilateral posterior corona radiata [P < 0.001, family-wise error (FWE) voxel correction]. The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata, and decreased in the left superior longitudinal fasciculus (P < 0.001, FWE voxel correction). The ICA results of WM overlapped with those of regional homo-geneity. The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale (P = 0.026, r = -0.32), and the right posterior corona radiata was also negatively correlated with the MINI suicide scale (P = 0.047, r = -0.288). CONCLUSION: Adolescents with MDD involves changes in WM functional signals, and these differences in brain regions may increase the risk of suicide.

13.
Adv Mater ; 36(23): e2401711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381000

ABSTRACT

Constructing an artificial solid electrolyte interphase (ASEI) on Li metal anodes (LMAs) is a potential strategy for addressing the dendrite issues. However, the mechanical fatigue of the ASEI caused by stress accumulation under the repeated deformation from the Li plating/stripping is not taken seriously. Herein, this work introduces a mechanically interlocked [an]daisy chain network (DCMIN) into the ASEI to stabilize the Li metal/ASEI interface by combining the functions of energy dissipation and fast Li-ion transport. The DCMIN featured by large-range molecular motions is cross-linked via efficient thiol-ene click chemistry; thus, the DCMIN has flexibility and excellent mechanical properties. As an ASEI, the crown ether units in DCMIN not only interact with the dialkylammonium of a flexible chain, forming the energy dissipation behavior but also coordinate with Li ion to support the fast Li-ion transport in DCMIN. Therefore, a stable 2800 h-symmetrical cycling (1 mA cm-2) and an excellent 5 C-rate (full cell with LiFePO4) performance are achieved by DCMIN-based ASEI. Furthermore, the 1-Ah pouch cell (LiNi0.88Co0.09Mn0.03O2 cathode) with DCMIN-coated LMA exhibits improved capacity retention (88%) relative to the Control. The molecular design of DCMIN provides new insights into the optimization of an ASEI for high-energy LMAs.

14.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324761

ABSTRACT

Versatile, informative, sensitive, and specific nucleic acid detection plays a crucial role in point-of-care pathogen testing, genotyping, and disease monitoring. In this study, we present a novel one-pot Cas12b-based method coupled with the "Green-Yellow-Red" strategy for multiplex detection. By integrating RT-LAMP amplification and Cas12b cleavage in a single tube, the entire detection process can be completed within 1 h. Our proposed method exhibits high specificity, enabling the discrimination of single-base mutations with detection sensitivity approaching single molecule levels. Additionally, the fluorescent results can be directly observed by the naked eye or automatically analyzed using our custom-designed software Result Analyzer. To realize point-of-care detection, we developed a portable cartridge capable of both heating and fluorescence excitation. In a clinical evaluation involving 20 potentially SARS-CoV-2-infected samples, our method achieved a 100% positive detection rate when compared to standard RT-PCR. Furthermore, the identification of SARS-CoV-2 variants using our method yielded results that were consistent with the sequencing results. Notably, our proposed method demonstrates excellent transferability, allowing for the simultaneous detection of various pathogens and the identification of mutations as low as 0.5% amidst a high background interference. These findings highlight the tremendous potential of our developed method for molecular diagnostics.

15.
Adv Healthc Mater ; 13(9): e2303379, 2024 04.
Article in English | MEDLINE | ID: mdl-38211342

ABSTRACT

Hydrogel dressings capable of infection monitoring and precise treatment administration show promise for advanced wound care. Existing methods involve embedd ingorganic dyes or flexible electronics into preformed hydrogels, which raise safety issues and adaptability challenges. In this study, an injectable hydrogel based smart wound dressing is developed by integrating food-derived anthocyanidin as a visual pH probe for infection monitoring and poly(L-lactic acid) microcapsules as ultrasound-responsive delivery systems for antibiotics into a poly(ethylene glycol) hydrogel. This straightforwardly prepared hydrogel dressing maintains its favorable properties for wound repair, including porous morphology and excellent biocompatibility. In vitro experiments demonstrated that the hydrogel enabled visual assessment of pH within the range of 5 âˆ¼ 9.Meanwhile, the release of antibiotics could be triggered and controlled by ultrasound. In vivo evaluations using infected wounds and diabetic wounds revealed that the wound dressing effectively detected wound infection by monitoring pH levels and achieved antibacterial effects through ultrasound-triggered drug release. This led to significantly enhanced wound healing, as validated by histological analysis and the measurement of inflammatory cytokine levels. This injectable hydrogel-based smart wound dressing holds great potential for use in clinical settings to inform timely and precise clinical intervention and in community to improve wound care management.


Subject(s)
Bandages , Hydrogels , Hydrogels/chemistry , Capsules , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials , Hydrogen-Ion Concentration
17.
J Cardiothorac Surg ; 19(1): 35, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297385

ABSTRACT

BACKGROUND: With the implementation of lung cancer screening programs, an increasing number of pulmonary nodules have been detected.Video-assisted thoracoscopic surgery (VATS) could provide adequate tissue specimens for pathological analysis, and has few postoperative complications.However, locating the nodules intraoperatively by palpation can be difficult for thoracic surgeons. The preoperative pulmonary nodule localization technique is a very effective method.We compared the safety and effectiveness of two methods for the preoperative localization of pulmonary ground glass nodules. METHODS: From October 2020 to April 2021, 133 patients who underwent CT-guided single pulmonary nodule localization were retrospectively reviewed. All patients underwent video-assisted thoracoscopic surgery (VATS) after successful localization. Statistical analysis was used to evaluate the localization accuracy, safety, information related to surgery and postoperative pathology information. The aim of this study was to evaluate the clinical effects of the two localization needles. RESULTS: The mean maximal transverse nodule diameters in the four-hook needle and hook wire groups were 8.97 ± 3.85 mm and 9.00 ± 3.19 mm, respectively (P = 0.967). The localization times in the four-hook needle and hook wire groups were 20.58 ± 2.65 min and 21.43 ± 3.06 min, respectively (P = 0.09). The dislodgement rate was significantly higher in the hook wire group than in the four-hook needle group (7.46% vs. 0, P = 0.024). The mean patient pain scores based on the visual analog scale in the four-hook needle and hook wire groups were 2.87 ± 0.67 and 6.10 ± 2.39, respectively (P = 0.000). All ground glass nodules (GGNs) were successfully resected by VATS. CONCLUSIONS: Preoperative pulmonary nodule localization with both a four-hook needle and hook wire is safe, convenient and effective.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Retrospective Studies , Early Detection of Cancer , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Multiple Pulmonary Nodules/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/pathology , Thoracic Surgery, Video-Assisted/methods
18.
Nat Chem Biol ; 20(3): 344-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38052959

ABSTRACT

Compact Cas9 nucleases hold great promise for therapeutic applications. Although several compact Cas9 nucleases have been developed, many genomic loci still could not be edited due to a lack of protospacer adjacent motifs (PAMs). We previously developed a compact SlugCas9 recognizing an NNGG PAM. Here we demonstrate that SlugCas9 displays comparable activity to SpCas9. We developed a simple phage-assisted evolution to engineer SlugCas9 for unique PAM requirements. Interestingly, we generated a SlugCas9 variant (SlugCas9-NNG) that could recognize an NNG PAM, expanding the targeting scope. We further developed a SlugCas9-NNG-based adenine base editor and demonstrated that it could be delivered by a single adeno-associated virus to disrupt PCSK9 splice donor and splice acceptor. These genome editors greatly enhance our ability for in vivo genome editing.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Proprotein Convertase 9 , Adenine , Endonucleases/genetics
19.
Circulation ; 149(4): 317-329, 2024 01 23.
Article in English | MEDLINE | ID: mdl-37965733

ABSTRACT

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Subject(s)
Cardiac Conduction System Disease , Gene Editing , Long QT Syndrome , Mice , Animals , Long QT Syndrome/genetics , Long QT Syndrome/therapy , Long QT Syndrome/diagnosis , Arrhythmias, Cardiac , Myocytes, Cardiac , Adenine , RNA, Messenger , NAV1.5 Voltage-Gated Sodium Channel/genetics , Mutation
20.
Macromol Biosci ; 24(4): e2300465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38111343

ABSTRACT

Combination therapy through colon-targeted oral delivery of multiple drugs presents a promising approach for effectively treating ulcerative colitis (UC). However, the codelivery of drugs with diverse physicochemical properties in a single formulation remains a formidable challenge. Here, microcapsules are designed based on hydroxyethyl starch-curcumin (HES─CUR) conjugates to enable the simultaneous delivery of hydrophobic dexamethasone acetate (DA) and hydrophilic cefazolin sodium (CS), yielding multiple drug-loaded microcapsules (CS/DA-loaded HES─CUR microcapsules, CDHC-MCs) tailored for colon-targeted therapy of UC. Thorough characterization confirms the successful synthesis and exceptional biocompatibility of CDHC-MCs. Biodistribution studies demonstrate that the microcapsules exhibit an impressive inflammatory targeting effect, accumulating preferentially in inflamed colons. In vivo experiments employing a dextran-sulfate-sodium-induced UC mouse model reveal that CDHC-MCs not only arrest UC progression but also facilitate the restoration of colon length and alleviate inflammation-related splenomegaly. These findings highlight the potential of colon-targeted delivery of multiple drugs within a single formulation as a promising strategy to enhance UC treatment, and the CDHC-MCs developed in this study hold great potential in developing novel oral formulations for advanced UC therapy.


Subject(s)
Colitis, Ulcerative , Curcumin , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Curcumin/chemistry , Tissue Distribution , Capsules/metabolism , Colon/metabolism , Starch/pharmacology , Dextran Sulfate/pharmacology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...