Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
2.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38574780

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Polygala , Rats , Mice , Animals , Rats, Sprague-Dawley , 1-Naphthylisothiocyanate/toxicity , China , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Cholestasis, Intrahepatic/chemically induced , Isothiocyanates/adverse effects , Isothiocyanates/metabolism , Bile Acids and Salts/metabolism
3.
Sci Rep ; 14(1): 7349, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38538748

ABSTRACT

Using a rat autologous orthotopic liver transplantation (AOLT) model and liver cold ischemia-reperfusion (I/R)-induced intestinal injury, we clarified whether ferroptosis occurred in rat AOLT cold I/R-induced intestinal injury. Additionally, the role and possible mechanism of the ferroptosis activator sulfasalazine (SAS) in intestinal injury-induced ferroptosis in rats with AOLT liver cold I/R were investigated. Sixty specific pathogen free (SPF)-grade adult male Sprague‒Dawley (SD) rats were randomly divided into 5 groups using the random number table method (n = 12). Six rats were randomly selected at 6 hour (h) and 24 h after I/R. Inferior vena cava blood specimens were collected from the portal vein (PV) opening at 6 h and 24 h. The concentrations of serum malondialdehyde (MDA), serum interleukin 6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA). Ileal tissue was obtained from the PV opening in rats in each group at 6 h and 24 h, and ileal tissue sections were observed under light microscopy. The contents of intestinal MDA, superoxide dismutase (SOD), glutathione(GSH), glutathione peroxidase 4 (GPX4), and tissue iron were determined by ELISA, and the expression of GPX4 and the cysteine glutamate reverse transporter light chain protein (xCT) was determined by Western blot. The experimental results show that ferroptosis is involved in the pathophysiological process of intestinal injury induced by cold hepatic ischemia-reperfusion in AOLT rats. In addition, SAS (500 mg/kg) may inhibit the cystine/glutamate antiporters (System Xc¯)/GSH/GPX4 signal axis in intestinal injury induced by cold I/R in rat AOLT liver, or iron overload after reperfusion, causing a massive accumulation of L-ROS and activating cellular ferroptosis, further aggravate the intestinal injury.


Subject(s)
Ferroptosis , Liver Transplantation , Reperfusion Injury , Rats , Male , Animals , Rats, Sprague-Dawley , Liver Transplantation/adverse effects , Sulfasalazine/pharmacology , Reperfusion Injury/metabolism , Glutathione/metabolism , Glutamates
4.
Neuroscience ; 541: 91-100, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38296019

ABSTRACT

Ischaemic stroke can induce changes in the abundance of gut microbiota constituents, and the outcome of stroke may also be influenced by the gut microbiota. This study aimed to determine whether gut microbiota transplantation could rescue changes in the gut microbiota and reduce ferroptosis after stroke in rats. Male Sprague-Dawley rats (6 weeks of age) were subjected to ischaemic stroke by middle cerebral artery occlusion (MCAO). Fecal samples were collected for 16S ribosomal RNA (rRNA) sequencing to analyze the effects of FMT on the gut microbiota. Neurological deficits were evaluated using the Longa score. triphenyl tetrazolium chloride (TTC) staining was performed in the brain, and kits were used to measure malondialdehyde (MDA), iron, and glutathione (GSH) levels in the ipsilateral brain of rats. Western blotting was used to detect the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and the transferrin receptor 2 (TFR2) in the ipsilateral brain of rats. Stroke induced significant changes in the gut microbiota, and FMT ameliorated these changes. TTC staining results showed that FMT reduced cerebral infarct volume. In addition, FMT diminished MDA and iron levels and elevated GSH levels in the ipsilateral brain. Western blot analysis showed that FMT increased GPX4 and SLC7A11 protein expression and decreased TFR2 protein expression in the ipsilateral brain after stroke. FMT can reverse gut microbiota dysbiosis, reduce cerebellar infarct volume, and decrease ferroptosis after stroke.


Subject(s)
Brain Ischemia , Ferroptosis , Ischemic Stroke , Stroke , Male , Animals , Rats , Rats, Sprague-Dawley , Stroke/therapy , Fecal Microbiota Transplantation , Brain Ischemia/therapy , Ischemic Stroke/therapy , Chlorides , Glutathione , Iron
5.
Rev. bras. cir. cardiovasc ; 33(6): 588-596, Nov.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-977474

ABSTRACT

Abstract Objective: To evaluate if lower activated coagulation time (ACT) value after neutralization than preoperative ACT value was effective in reducing bleeding, operative times, and post-operative transfusions in patients underwent coronary artery bypass grafting (CABG). Methods: Retrospective selection of 398 patients from January 2014 to May 2017. Patients were divided into 2 groups according to final ACT after neutralization: A - final ACT lower than preoperative ACT; and B - final ACT higher than or equal to preoperative ACT. Hemostatic time, intraoperative blood loss, ACT after final neutralization, mediastinal blood loss, and transfusion requirements were observed. Results: The hourly blood loss in the Group A was generally lower than in the Group B at first 3 hours, which has significant difference (P<0.05). However, there was no difference after 3 hours between the two groups. Operative time, intraoperative blood loss, mediastinal blood loss, transfusion requirements, and drainage in the first postoperative 12 hours in the Group A were lower than in Group B, which has significant difference (P<0.05). Conclusion: As a result, final ACT values lower than pre-heparinization ACT values are safe and lead to lower operative times, bleeding, and post-operative transfusions.


Subject(s)
Humans , Male , Female , Middle Aged , Heparin/administration & dosage , Coronary Artery Bypass/adverse effects , Blood Loss, Surgical/prevention & control , Postoperative Hemorrhage/prevention & control , Postoperative Period , Whole Blood Coagulation Time , Retrospective Studies , Blood Loss, Surgical/physiopathology , Operative Time , Anticoagulants/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL