Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
1.
Neural Regen Res ; 20(1): 67-81, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767477

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.

2.
Pharmacol Res ; 207: 107305, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002868

ABSTRACT

Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124673, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38981288

ABSTRACT

The ion association of salts aqueous solutions have long captivated the attention of researchers within the field of physical chemistry. In this paper, we have performed a comprehensive analysis of ion interactions in sodium sulfate (Na2SO4) aqueous solutions using a combination of high-resolution techniques, including excess (ERS) and two-dimensional correlation (2DCRS) Raman spectroscopy in conjunction with molecular dynamics (MD) calculations. The Raman spectrum shows that two inflection points in the Raman shift of the O-H vibration are observed with the increase in Na2SO4 concentration. Simultaneously, a new peak of the SO42- vibration appears at first inflection point, representing the formation of ion association. Further analysis based on ERS and 2CRS reveals that these two inflection points correspond respectively to the formation of ion pairs (CIPs) and small ion clusters. Importantly, MD simulations confirm the above experimental results. Our study provides evidence for ion association and clustering in aqueous in salt ion aqueous solutions.

4.
Article in English | MEDLINE | ID: mdl-38994618

ABSTRACT

The cell death field has profited from the increasing attention of the scientific community and has been shown to lie at the very basis of cancer initiation and progression. Cuproptosis is a recently proposed method of cell death in 2022, and it is different from any previously reported method. The principle is that copper ions lead to aggregation and instability of intracellular proteins. An increasing number of researchers are dedicated to enriching the mechanism of cuproptosis and exploring its relationship with cancer. Studies have found that intracellular copper levels have an impact on the occurrence and development of lymphoma. The complexity of lymphoma and the limitations of treatment necessitate in-depth studies of the disease. We will review the mechanism of cuproptosis and its potential in lymphoma therapy.

5.
MedComm (2020) ; 5(7): e652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006763

ABSTRACT

Somatic mutations related to clonal hematopoiesis of indeterminate potential (CHIP) are risk factors for stroke. The impact of DNMT3A, the most mutated gene in CHIP, on clinical functional outcomes of acute ischemic stroke (AIS) remains unclear. In a well-characterized cohort of 8524 ischemic stroke patients, we demonstrated that DNMT3A-driven CHIP was significantly associated with neurological disability in these patients. With a stroke mouse model of transient middle cerebral artery occlusion (tMCAO), we demonstrated that DNMT3A protein levels in the brain penumbra increased. The DNMT3A inhibitor RG108 administration amplified neutrophil proliferation in the blood, promoted neutrophil infiltration into the brain penumbra, and exaggerated proinflammatory activation in tMCAO male mice. DNMT3A inhibition also significantly increased infarct volume and worsened neurobehavioral function in tMCAO male mice. In conclusion, DNMT3A somatic mutations are associated with worsened neurological disability in some patients with AIS, potentially through increased neutrophil proliferation and infiltration in the ischemic brain region. These findings suggest a possible mechanism for proinflammatory activation and tissue damage in the affected brain tissue, highlighting the need for further research in this area.

6.
Neurospine ; 21(2): 588-595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955530

ABSTRACT

OBJECTIVE: Epidemiological studies on spinal cord tumors are rare, and studies on primary intramedullary tumors are even rarer. The incidence and survival of patients with primary intramedullary spinal cord tumors have not been well documented. We aimed to study the incidence and survival of patients with primary spinal cord malignant and borderline malignant tumors based on data from the Surveillance, Epidemiology, and End Results (SEER) database and provide information for revealing the epidemiology and exploring the prognosis of patients with primary intramedullary tumors. METHODS: Patients in the SEER database with microscopically diagnosed malignant and borderline malignant primary spinal cord tumors from 2000 and 2019 were included in this study. We analyzed the distribution of patients according to the demographic and clinical characteristics. Then, we extracted the incidence rate and 5-year relative survival for the whole cohort and different subgroups of the cohort. Finally, multivariate Cox proportional hazards models were used to analyze the independent prognostic factors associated with overall survival. RESULTS: A total of 5,211 patients with malignant and borderline malignant primary spinal cord tumors were included in this cohort study. Ependymoma, astrocytoma (including oligodendrogliomas and glioblastoma), lymphoma and hemangioblastoma were the most common pathological types. The age-adjusted incidence rates of primary spinal cord ependymoma was 0.18 per 100,000. The incidence rate for females was significantly lower than that for males. The incidence rate was highest in Caucasian. The incidence rate of ependymoma was significantly higher than that of other pathological types. The incidence of astrocytoma was highest among people aged 0-19 years, the incidence of ependymoma was highest among people aged 40-59 years, and the incidence of lymphoma was highest among people aged 60 years or older. The 5-year observed survival and relative survival rates for the whole cohort were 82.80% and 86.00%, respectively. Patients diagnosed with ependymoma had significantly better survival than their counterparts. We also found the impact of surgery and chemotherapy on the prognosis of patients with different tumors varies a lot. CONCLUSION: We conducted a population-based analysis of malignant and borderline malignant primary spinal cord tumors with the aim of revealing the epidemiology and survival of patients with primary intramedullary spinal cord tumors. Despite some shortcomings, this study provides valuable information to help us better understand the epidemiological characteristics of primary intramedullary spinal cord tumors.

7.
Microbiome ; 12(1): 121, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970122

ABSTRACT

BACKGROUND: Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry. RESULTS: In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG). In addition, hybrid assembly obtained 51% more prokaryotic genes in comparison to the short-read-only assembly. Metatranscriptomics-guided metabolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales-affiliated bacteria and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methanogens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role. CONCLUSION: Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic digestion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems. Video Abstract.


Subject(s)
Carbon , Metagenomics , Methane , Methane/metabolism , Carbon/metabolism , Metagenomics/methods , Bioreactors/microbiology , Metagenome , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Phylogeny , Anaerobiosis , Transcriptome , Genome, Bacterial , Microbiota , Gene Expression Profiling
8.
Int J Pharm ; 661: 124426, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972519

ABSTRACT

In recent years, the use of arsenic trioxide (ATO) in the context of ovarian cancer chemotherapy has attracted significant attention. However, ATO's limited biocompatibility and the occurrence of severe toxic side effects hinder its clinical application. A nanoparticle (NP) drug delivery system using ATO as a therapeutic agent is reported in this study. Achieving a synergistic effect by combining starvation therapy, chemodynamic therapy, and chemotherapy for the treatment of ovarian cancer was the ultimate goal of this system. This nanotechnology-based drug delivery system (NDDS) introduced arsenic-manganese complexes into cancer cells, leading to the subsequent release of lethal arsenic ions (As3+) and manganese ions (Mn2+). The acidic microenvironment of the tumor facilitated this process, and MR imaging offered real-time monitoring of the ATO dose distribution. Simultaneously, to produce reactive oxygen species that induced cell death through a Fenton-like reaction, Mn2+ exploited the surplus of hydrogen peroxide (H2O2) within tumor cells. Glucose oxidase-based starvation therapy further supported this mechanism, which restored H2O2 and lowered the cellular acidity. Consequently, this approach achieved self-enhanced chemodynamic therapy. Homologous targeting of the NPs was facilitated through the use of SKOV3 cell membranes that encapsulated the NPs. Hence, the use of a multimodal NDDS that integrated ATO delivery, therapy, and monitoring exhibited superior efficacy and biocompatibility compared with the nonspecific administration of ATO. This approach presents a novel concept for the diagnosis and treatment of ovarian cancer.

9.
Opt Express ; 32(11): 20146-20152, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859131

ABSTRACT

Sapphire is a promising wideband substrate material for visible photonics. It is a common growth substrate for III-nitride light-emitting diodes and laser structures. Doped sapphires are important gain media foundational to the development of titanium-sapphire and ruby lasers. For lasers operating at visible and near-infrared wavelengths, a photonic platform that minimizes loss while maximizing gain material overlap is crucial. Here, we introduce a novel low-loss waveguiding strategy that establishes high-performance integrated photonics on sapphire substrates. This platform achieves a high intrinsic quality factor of 5.6 million near 780 nm and features direct compatibility with a range of solid-state laser gain media.

10.
Front Nutr ; 11: 1387657, 2024.
Article in English | MEDLINE | ID: mdl-38903627

ABSTRACT

Background: Physical exertion during exercise often leads to increased oxidative stress and inflammatory responses, significantly affecting physical performance. Current strategies to mitigate these effects are limited by their effectiveness and potential side effects. Molecular hydrogen (H2) has gained attention for its antioxidant and anti-inflammatory properties. Studies have suggested that H2 supplementation contributes to antioxidant potential and anti-fatigue during exercise, but the variance in the observations and study protocols is presented across those studies. Objective: This systematic review and meta-analysis aimed to comprehensively characterize the effects of H2 supplementation on physical performance (i.e., endurance, muscular strength, and explosive power), providing knowledge that can inform strategies using H2 for enhancing physical performance. Methods: We conducted a literature search of six databases (PubMed, Web of Science, Medline, Sport-Discus, Embase, and PsycINFO) according to the PRISMA guidelines. The data were extracted from the included studies and converted into the standardized mean difference (SMD). After that, we performed random-effects meta-analyses and used the I 2 statistic to evaluate heterogeneity. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the quality of the evidence obtained from this meta-analysis. Results: In total, 27 publications consisting of 597 participants were included. The search finally included aerobic endurance, anaerobic endurance, muscular strength, lower limb explosive power, rating of perceived exertion (RPE), blood lactate (BLA), and average heart rate (HRavg) in the effect size (ES) synthesis. The ES of H2 on aerobic endurance, including V̇O2max (SMD = 0.09, p = 0.394; I 2 = 0%) and aerobic endurance exercise (SMD = 0.04, p = 0.687; I 2 = 0%), were not significant and trivial; the ES of H2 on 30 s maximal anaerobic endurance (SMD = 0.19, p = 0.239; I 2 = 0%) was not significant and trivial; the ES of H2 on muscular strength (SMD = 0.19, p = 0.265; I 2 = 0%) was not significant and trivial; but the ES of H2 on lower limb explosive power (SMD = 0.30, p = 0.018; I 2 = 0%) was significant and small. In addition, H2 reduces RPE (SMD = -0.37, p = 0.009; I 2 = 58.0%) and BLA (SMD = -0.37, p = 0.001; I 2 = 22.0%) during exercise, but not HRavg (SMD = -0.27, p = 0.094; I 2 = 0%). Conclusion: These findings suggest that H2 supplementation is favorable in healthy adults to improve lower limb explosive power, alleviate fatigue, and boost BLA clearance, but may not be effectively improving aerobic and anaerobic endurance and muscular strength. Future studies with more rigorous designs are thus needed to examine and confirm the effects of H2 on these important functionalities in humans. Systematic review registration: http://www.crd.york.ac.uk/PROSPERO.

11.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891412

ABSTRACT

Dielectric elastomers, such as thermoplastic polyurethanes (TPUs), are widely used as the dielectric layer, encapsulation layer, and substrate of flexible and stretchable devices. To construct capacitors and actuators that work stably upon deformation, it has become urgent to investigate the evolution of dielectricity under stress and strain. However, the lack of effective methods for estimating the dielectric constant of elastomers under strain poses a big challenge. This study reports a device for the in situ measurement of the dielectric constant of TPU under strain. It is found that upon stretching TPU to a strain of 400%, its dielectric constant decreases from 8.02 ± 0.01 to 2.88 ± 0.25 (at 1 MHz). In addition, combined Fourier-transform infrared spectroscopy, the X-ray scattering technique, and atomic force microscopy were utilized to characterize the evolution of the microstructure under strain. The investigation under tensile strain reveals a decreased density and average size of polarized hard domains, along with a tendency of the molecular chains to align in parallel with the tensile stress. The evolution of the microstructures results in a reduction in the measured dielectric constant in TPU.

12.
J Oncol Pharm Pract ; : 10781552241259354, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839571

ABSTRACT

INTRODUCTION: Tyrosine kinase inhibitors (TKIs) have been used as the first-line treatment for many patients with renal cell carcinoma (RCC), the seventh most common cancer in the United Kingdom. However, suboptimal adherence to TKIs can result in poor clinical prognosis. This study quantified RCC patients' adherence to TKIs and explored factors associated with suboptimal adherence. METHOD: This retrospective cohort study was conducted at a specialist oncology tertiary hospital in Northwest England, using pharmacy dispensing records between November 2021 and March 2022. TKI prescriptions dispensed to patients with RCC were extracted to calculate the persistency gaps (≥7 or ≥14 days) and medication possession ratio (MPR). Multilevel regression analysis was conducted to associate MPR and persistency gaps with specific patient-related and TKI-related factors. This study did not require ethics approval. RESULTS: Of the 2225 prescriptions dispensed to 109 patients, 469 (23.4%) and 274 (13.7%) persistency gaps of ≥7 and ≥14 days were identified. About 75% and 92% of patients had a persistency gap of ≥7 days within the first 90 days and 180 days. The length of time since the first TKI prescription (p < 0.001) and the use of sunitinib(p = 0.003) were significantly associated with the number of prescription gaps of ≥7 days. Moreover, the median MPR was 95.6% (interquartile range: 90.7%, 100.1%). Similarly, the length of time since the first TKI prescription was dispensed (p < 0.001) and the use of sunitinib (p = 0.034) were significantly associated with MPR. DISCUSSION AND CONCLUSION: This single-centre study found that patients with RCC generally adhere to TKIs (MPR > 90%), but many patients experienced a persistency gap. The crucial window to mitigate TKI utilisation is within 180 days after the initial dispensing of TKIs. Further large-scale studies are required to comprehensively investigate other factors associated with adherence to TKIs and develop interventions to improve adherence and medication use problems.

13.
Ann Hematol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886192

ABSTRACT

BACKGROUND: The interaction between CD47 and signal-regulatory protein-alpha (SIRPα) inhibits phagocytosis, and their clinicopathological characteristics have been evaluated in various diseases. However, the significance of CD47 and SIRPα expression, as well as the combined effect, in Extranodal Natural killer/T-cell Lymphoma (ENKTL) remains uncertain. METHODS: In total, 76 newly diagnosed ENKTL patients (mean age 49.9 years, 73.7% male) were included in this study. CD47 and SIRPα expression were examined by immunohistochemistry. Survival analyses were conducted through Kaplan-Meier curves and the Cox regression model. RESULTS: Seventy-one (93.4%) cases were categorized as the CD47 positive group and 59 (77.6%) cases were categorized as the SIRPα positive group. CD47-negative cases had more advanced-stage illness (P = 0.001), while SIRPα-positive cases showed significantly lower levels of high-density lipoprotein (P < 0.001). In univariable analysis, CD47, SIRPα expression, and their combination were significantly associated with prognosis (P < 0.05). In multivariable analysis, only positive SIRPα expression remained significantly associated with superior overall survival (Hazard ratio [HR] 0.446; 95% confidence interval [CI] 0.207-0.963; P = 0.004). Furthermore, SIRPα expression could re-stratify the survival of patients in ECOG (< 2), advanced CA stage, PINK (HR), CD38-positive, PD1-positive, and CD30-positive groups. CONCLUSIONS: SIRPα status was a potential independent prognostic factor for ENKTL. The prognostic significance of CD47 expression and the interaction between CD47 and SIRPα in ENKTL need further investigation.

14.
J Am Chem Soc ; 146(25): 17158-17169, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874447

ABSTRACT

Understanding Li-ion transport is key for the rational design of superionic solid electrolytes with exceptional ionic conductivities. LiNbOCl4 is reported to be one of the most highly conducting materials in the recently realized new class of soft oxyhalide solid electrolytes, exhibiting an ionic conductivity of ∼11 mS·cm-1. Here, we apply X-ray/neutron diffraction and pair distribution function analysis─coupled with density functional theory/ab initio molecular dynamics (AIMD)─to determine a structural model that provides a rationale for the high conductivity that we observe experimentally in this nanocrystalline solid. We show that it arises from unusually high framework flexibility at room temperature. This is due to isolated 1-D [NbOCl4]- anionic chains that exhibit energetically favorable orientational disorder that is─in turn─correlated to multiple, disordered, and equi-energetic Li+ sites in the lattice. As the Li ions sample the 3-D energy landscape with a fast predicted diffusion coefficient of 5.1 × 10-7 cm2/s at room temperature (σicalc = 17.4 mS·cm-1), the inorganic polymer chains can reorient or vice versa. The activation energy barrier for Li migration through the frustrated energy landscape is especially reduced by the elastic nature of the NbO2Cl4 octahedra evident from very widely dispersed Cl-Nb-Cl bond angles in AIMD simulations at 300 K. The phonon spectra are predominantly influenced by Cl vibrations in the low energy range, and there is a strong overlap between the framework (Cl, Nb) and Li partial density of states in the region between 1.2 and 4.0 THz. The framework flexibility is also reflected in a relatively low bulk modulus of 22.7 GPa. Our findings pave the way for the investigation of future "flex-ion" inorganic solids and open up a new direction for the design of high-conductivity, soft solid electrolytes for all-solid-state batteries.

15.
Poult Sci ; 103(8): 103868, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38833743

ABSTRACT

Klebsiella pneumoniae is a serious pathogenic bacterium that poses a significant threat to young poultry and the cause of significant chick mortality and economic loss. We investigated the therapeutic efficacy of enrofloxacin in treating K. pneumoniae infections in chicks and employed an in vivo pharmacokinetic/pharmacodynamic (PK/PD) model. In vivo efficacy was evaluated using 6 multiple-dose groups (oral administration once a day for 3 d) and 2 single-dose groups (oral administration once only). The PK and PD parameters of plasma and lung were analyzed using PK/PD fitting analysis. K. pneumoniae administered intratracheally (108 CFU/mL in 0.4 mL saline) was used to establish a model for pulmonary infection. The plasma protein binding of enrofloxacin was 20.18%. Enrofloxacin displayed T1/2ß values of 4.78 ± 0.69 h and 4.78 ± 1.02 h in plasma and lung of infected chicks, respectively. When the dosage in the multiple-dose group was > 10 mg/kg, bactericidal activity was found and complete eradication was not achieved when the dosage was ≤ 40 mg/kg. When TMSW was set at 20%, the calculated dosage and bacterial reduction (E) based on plasma free drug data were 4.03 mg/kg and -1.982 Log10 CFU/mL, respectively. In the calculation of PK/PD parameters for reducing 3 Log10 CFU/mL and using Cmax/MIC, AUC72h/MIC and TMSW of free drug in plasma values at 9.479, 379.691, and 44.395%, respectively, the value of AUC72h/MIC based on the concentration of drug in lung was 530.800. According to the fitting correlation R2, the PK/PD fitting results of free drug in plasma were better. The corresponding enrofloxacin dosage for AUC72h/MIC of the plasma free drug concentration was 14.16 mg/kg. The administration regimen corresponding to these dosages was once daily for 3 d. This dosage regimen (14.16 mg/kg) was relatively high compared to the clinically recommended dosage in China (7.5 mg/kg) when treating infections caused by K. pneumoniae with MIC ≥ 0.125 µg/mL, so careful consideration is needed.

16.
BMC Plant Biol ; 24(1): 563, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879466

ABSTRACT

BACKGROUND: Drought is a leading environmental factor affecting plant growth. To explore the drought tolerance mechanism of asparagus, this study analyzed the responses of two asparagus varieties, namely, 'Jilv3' (drought tolerant) and 'Pacific Early' (drought sensitive), to drought stress using metabolomics and transcriptomics. RESULTS: In total, 2,567 and 7,187 differentially expressed genes (DEGs) were identified in 'Pacific Early' and 'Jilv3', respectively, by comparing the transcriptome expression patterns between the normal watering treatment and the drought stress treatment. These DEGs were significantly enriched in the amino acid biosynthesis, carbon metabolism, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways. In 'Jilv3', DEGs were also enriched in the following energy metabolism-related pathways: citrate cycle (TCA cycle), glycolysis/gluconeogenesis, and pyruvate metabolism. This study also identified 112 and 254 differentially accumulated metabolites (DAMs) in 'Pacific Early' and 'Jilv3' under drought stress compared with normal watering, respectively. The amino acid, flavonoid, organic acid, and soluble sugar contents were more significantly enhanced in 'Jilv3' than in 'Pacific Early'. According to the metabolome and transcriptome analysis, in 'Jilv3', the energy supply of the TCA cycle was improved, and flavonoid biosynthesis increased. As a result, its adaptability to drought stress improved. CONCLUSIONS: These findings help to better reveal the molecular mechanism underlying how asparagus responds to drought stress and improve researchers' ability to screen drought-tolerant asparagus varieties as well as breed new varieties.


Subject(s)
Asparagus Plant , Droughts , Metabolomics , Transcriptome , Asparagus Plant/genetics , Asparagus Plant/metabolism , Asparagus Plant/physiology , Gene Expression Profiling , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Metabolome
17.
Int J Anal Chem ; 2024: 5535752, 2024.
Article in English | MEDLINE | ID: mdl-38766522

ABSTRACT

Traditional Chinese medicine (TCM) serves as a significant adjunct to chemical treatment for chronic diseases. For instance, the administration of Baitouweng decoction (BTWD) has proven effective in the treatment of ulcerative colitis. However, the limited understanding of its pharmacokinetics (PK) has impeded its widespread use. Chinese Bama miniature pigs possess anatomical and physiological similarities to the human body, making them a valuable model for investigating PK properties. Consequently, the identification of PK properties in Bama miniature pigs can provide valuable insights for guiding the clinical application of BTWD in humans. To facilitate this research, a rapid and sensitive UPLC-MS/MS method has been developed for the simultaneous quantification of eleven active ingredients of BTWD in plasma. Chromatographic separation was conducted using an Acquity UPLC HSS T3 C18 column and a gradient mobile phase comprising acetonitrile and water (containing 0.1% acetic acid). The methodology was validated in accordance with the FDA Bioanalytical Method Validation Guidance for Industry. The lower limit of quantitation fell within the range of 0.60-2.01 ng/mL. Pharmacokinetic studies indicated that coptisine chloride, berberine, columbamine, phellodendrine, and obacunone exhibited low Cmax, while fraxetin, esculin, fraxin, and pulchinenoside B4 were rapidly absorbed and eliminated from the plasma. These findings have implications for the development of effective components in BTWD and the adjustment of clinical dosage regimens.

18.
Chemistry ; 30(37): e202401463, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38699856

ABSTRACT

Aqueous zinc-ion batteries are anticipated to be the next generation of important energy storage devices to replace lithium-ion batteries due to the ongoing use of lithium resources and the safety hazards associated with organic electrolytes in lithium-ion batteries. Manganese-based compounds, including MnOx materials, have prominent places among the many zinc-ion battery cathode materials. Additionally, Cu doping can cause the creation of an oxygen vacancy, which increases the material's internal electric field and enhances cycle stability. MnOx also has great cyclic stability and promotes ion transport. At a current density of 0.2 A g-1, the Cu/MnOx nanocomposite obtained a high specific capacitance of 304.4 mAh g-1. In addition, Cu/MnOx nanocomposites showed A high specific capacity of 198.9 mAh g-1 after 1000 cycles at a current density of 0.5 A g-1. Therefore, Cu/MnOx nanocomposites are expected to be a strong contender for the next generation of zinc-ion battery cathode materials in high energy density storage systems.

19.
Int J Biol Macromol ; 271(Pt 1): 132594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821811

ABSTRACT

A lipidated polysaccharide, HDPS-2II, was isolated from the dried larva of Holotrichia diomphalia, which is used in traditional Chinese medicine. The molecular weight of HDPS-2II was 5.9 kDa, which contained a polysaccharide backbone of →4)-ß-Manp-(1 â†’ 4,6)-ß-Manp-(1 â†’ [6)-α-Glcp-(1]n â†’ 6)-α-Glcp→ with the side chain α-Glcp-(6 â†’ 1)-α-Glcp-(6 â†’ linked to the C-4 of ß-1,4,6-Manp and four types of lipid chains including 4-(4-methyl-2-(methylamino)pentanamido)pentanoic acid, 5-(3-(tert-butyl)phenoxy)hexan-2-ol, N-(3-methyl-5-oxopentan-2-yl)palmitamide, and N-(5-amino-3-methyl-5-oxopentan-2-yl)stearamide. The lipid chains were linked to C-1 of terminal α-1,6-Glcp in carbohydrate chain through diacyl-glycerol. HDPS-2II exhibited DNA protective effects and antioxidative activity on H2O2- or adriamycin (ADM)-induced Chinese hamster lung cells. Furthermore, HDPS-2II significantly ameliorated chromosome aberrations and the accumulation of reactive oxygen species (ROS), reduced γ-H2AX signaling and the expressions of NADPH oxidase (NOX)2, NOX4, P22phox, and P47phox in ADM-induced cardiomyocytes. Mechanistically, HDPS-2II suppressed ADM-induced up-regulation of NOX2 and NOX4 in cardiomyocytes, but not in NOX2 or NOX4 knocked-down cardiomyocytes, indicating that HDPS-2II could relieve intracellular DNA damage by regulating NOX2/NOX4 signaling. These findings demonstrate that HDPS-2II is a new potential DNA protective agent.


Subject(s)
DNA Damage , Glycolipids , Animals , DNA Damage/drug effects , Glycolipids/pharmacology , Glycolipids/chemistry , Coleoptera , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Cricetulus , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification
20.
Eur J Med Chem ; 271: 116395, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38626523

ABSTRACT

The transforming growth factor ß1 (TGFß1)/SMAD signaling pathway regulates many vital physiological processes. The development of potent inhibitors targeting activin receptor-like kinase 5 (ALK5) would provide potential treatment reagents for various diseases. A significant number of ALK5 inhibitors have been discovered, and they are currently undergoing clinical evaluation at various stages. However, the clinical demands were far from being met. In this study, we utilized an alternative conformation-similarity-based virtual screening (CSVS) combined with a fragment-based drug designing (FBDD) strategy to efficiently discover a potent and active hit with a novel chemical scaffold. After structural optimization in the principle of group replacement, compound 57 was identified as the most promising ALK5 inhibitor. Compound 57 demonstrated significant inhibitory effects against the TGF-ß1/SMAD signaling pathway. It could markedly attenuate the production of extracellular matrix (ECM) and deposition of collagen. Also, the lead compound showed adequate pharmacokinetic (PK) properties and good in vivo tolerance. Moreover, treatment with compound 57 in two different xerograph models showed significant inhibitory effects on the growth of pancreatic cancer cells. These results suggested that lead compound 57 refers as a promising ALK5 inhibitor both in vitro and in vivo, which merits further validation.


Subject(s)
Drug Design , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Humans , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Animals , Molecular Structure , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Mice , Cell Line, Tumor , Drug Screening Assays, Antitumor , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL