Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
Article in English | MEDLINE | ID: mdl-39088025

ABSTRACT

This study aimed to develop a multienzymatic system for synthesis of L-malate. First, recombinant Escherichia coli strains were constructed expressing maleic acid cis-trans isomerase (MaiA) or fumarase C (FumC) from different sources. Serratia marcescens MaiA (SMaiA) and E. coli FumC (ECFumC) showed good catalytic performance. Next, six co-expression systems for SMaiA and ECFumC were constructed. E. coli BL21 (DE3)-pRSFDuet-1-ecfumC-smaiA (named strain pFM2) had the highest L-malate catalytic activity. In 7-L fed-batch fermentation, the SMaiA and ECFumC activities of strain pFM2 wet cells were 43.4 and 154.5 U/g, respectively, 2.4- and 10.7-fold the values that were obtained in shaken flasks. Finally, a whole-cell catalytic process was established for the production of L-malate by strain pFM2 with maleate as the substrate. When the dose of pFM2 wet cells was 0.5 g/100 mL and 1 mol/L maleate was the substrate, the catalytic process was completed within 4 h. Notably, the intermediate fumarate was almost absent during the conversion process. The concentration of L-malate reached 143.8 g/L with a yield of 0.60 g/(L·min). The molar conversion rate of the substrate was 98.4%. These findings lay a foundation for the industrial application of multienzymatic synthesis of L-malate.

2.
Materials (Basel) ; 17(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063899

ABSTRACT

This review comprehensively explores fluoride removal from phosphogypsum, focusing on its composition, fluorine-containing compounds, characterization methods, and defluorination techniques. It initially outlines the elemental composition of phosphogypsum prevalent in major production regions and infers the presence of fluorine compounds based on these constituents. The study highlights X-ray photoelectron spectroscopy (XPS) as a pivotal method for characterizing fluorine compounds, emphasizing its capability to determine precise binding energies essential for identifying various fluorine species. Additionally, the first-principle density functional theory (DFT) is employed to estimate binding energies of different fluorine-containing compounds. Significant correlations are observed between the total atomic energy of binary fluorides (e.g., of alkali metals, earth metals, and boron group metals) and XPS binding energies. However, for complex compounds like calcium fluorophosphate, correlations with the calculated average atomic total energy are less direct. The review categorizes defluorination methods applied to phosphogypsum as physical, chemical, thermal, and thermal-combined processes, respectively. It introduces neural network machine learning (ML) technology to quantitatively analyze and optimize reported defluorination strategies. Simulation results indicate potential optimizations based on quantitative analyses of process conditions reported in the literature. This review provides a systematic approach to understanding the phosphogypsum composition, fluorine speciation, analytical methodologies, and effective defluorination strategies. The attempts of adopting DFT simulation and quantitative analysis using ML in optimization underscore its potential and feasibility in advancing the industrial phosphogypsum defluorination process.

3.
Adv Sci (Weinh) ; : e2400227, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018247

ABSTRACT

Lysine lactylation (Kla) plays a vital role in several physiological processes. However, the cancer-specific modulation of Kla in gastrointestinal (GI) tumors requires systematic elucidation. Here, global lactylome profiling of cancerous and adjacent tissues is conducted from 40 patients with GI cancer and identified 11698 Kla sites. Lactylome integration revealed that Kla affects proteins involved in hallmark cancer processes, including epigenetic rewiring, metabolic perturbations, and genome instability. Moreover, the study revealed pan-cancer patterns of Kla alterations, among which 37 Kla sites are consistently upregulated in all four GI cancers and are involved in gene regulation. It is further verified that lactylation of CBX3 at K10 mediates its interaction of CBX3 with the epigenetic marker H3K9me3 and facilitates GI cancer progression. Overall, this study provides an invaluable resource for understanding the lactylome landscape in GI cancers, which may provide new paths for drug discovery for these devastating diseases.

4.
Pancreatology ; 24(5): 771-778, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853072

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the digestive malignancy with poor prognosis, and there is still a lack of effective diagnostic biomarkers. OBJECTIVE: We aimed to explore the diagnostic efficiency of DNA methylation in peripheral blood monocytes (PBMCs) in PDAC. METHODS: 850K BeadChips were used to detect genome-wide methylation of PBMCs. For the selected sites, MethylTarget assays was used for further verification. The support vector machine was used to establish the combined panel. RESULTS: A total of 167 PDAC patients and 113 healthy controls were included in this study and were divided into three sets. In the discovery set, we found 4625 differentially methylated positions (DMPs) between cancer group and healthy controls. ZFHX3 (0.16 ± 0.04 vs. 0.18 ± 0.04, P = 0.001), cg01904886 (0.84 ± 0.05 vs. 0.81 ± 0.04, P = 0.02) and NUMBL (0.96 ± 0.005 vs. 0.957 ± 0.005, P = 0.04) were found to be significantly different in training set. The locus with more significant differences, namely ZFHX3, was used for further validation and to establish a combined diagnostic panel with CA19-9. In the validation set, the ROC curve indicated that the AUC value of ZFHX3 was 0.75. The AUC value of the combined model (AUC = 0.92) was higher than that of CA19-9 alone (AUC = 0.88). In patients with normal CA19-9 levels, the ZFHX3 methylation biomarker still maintained good diagnostic efficacy (AUC = 0.71). CONCLUSION: Our study preliminarily suggests that ZFHX3 methylation combined with CA19-9 can improve the detection rate of PDAC. Especially in patients with normal CA19-9, ZFHX3 methylation can maintain stable diagnostic efficacy. The diagnostic value of ZFHX3 methylation still needs to be prospectively validated.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , DNA Methylation , Monocytes , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Male , Female , Middle Aged , Monocytes/metabolism , Aged , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/blood , Homeodomain Proteins/genetics , Case-Control Studies
5.
Mol Carcinog ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804704

ABSTRACT

Gastric cancer (GC) exhibits significant heterogeneity and its prognosis remains dismal. Therefore, it is essential to investigate new approaches for diagnosing and treating GC. Desmosome proteins are crucial for the advancement and growth of cancer. Plakophilin-2 (PKP2), a member of the desmosome protein family, frequently exhibits aberrant expression and is strongly associated with many tumor types' progression. In this study, we found upregulation of PKP2 in GC. Further correlation analysis showed a notable association between increased PKP2 expression and both tumor stage and poor prognosis in individuals diagnosed with gastric adenocarcinoma. In addition, our research revealed that the Yes-associated protein1 (YAP1)/TEAD4 complex could stimulate the transcriptional expression of PKP2 in GC. Elevated PKP2 levels facilitate activation of the AKT/mammalian target of rapamycin signaling pathway, thereby promoting the malignant progression of GC. By constructing a mouse model, we ultimately validated the molecular mechanism and function of PKP2 in GC. Taken together, these discoveries suggest that PKP2, as a direct gene target of YAP/TEAD4 regulation, has the potential to be used as an indication of GC progression and prognosis. PKP2 is expected to be a promising therapeutic target for GC.

6.
Oncogene ; 43(23): 1757-1768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622203

ABSTRACT

Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.


Subject(s)
Carcinoma, Signet Ring Cell , Colorectal Neoplasms , Histone Demethylases , Child , Humans , Male , Carcinoma, Signet Ring Cell/genetics , Carcinoma, Signet Ring Cell/pathology , Carcinoma, Signet Ring Cell/immunology , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Histone Demethylases/genetics , Histone Demethylases/metabolism , Mutation , Tumor Escape/genetics
7.
Biomed Pharmacother ; 174: 116574, 2024 May.
Article in English | MEDLINE | ID: mdl-38593706

ABSTRACT

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.


Subject(s)
Cell Death , Gastrointestinal Neoplasms , Metals , Humans , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/drug therapy , Animals , Cell Death/drug effects , Ferroptosis/drug effects , Ions/metabolism , Antineoplastic Agents/pharmacology
8.
Cancer Sci ; 115(7): 2301-2317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676428

ABSTRACT

GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.


Subject(s)
Cell Proliferation , Disease Progression , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Helicobacter pylori , Stomach Neoplasms , Zinc Finger Protein GLI1 , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Humans , Animals , Cell Line, Tumor , Mice , Signal Transduction , Helicobacter Infections/metabolism , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Up-Regulation , Male , Carcinogenesis/genetics
9.
Arch Toxicol ; 98(7): 2007-2018, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38602537

ABSTRACT

Gastrointestinal cancer is a significant global health burden, necessitating the development of novel therapeutic strategies. Emerging evidence has highlighted the potential of targeting ferritinophagy as a promising approach for the treatment of gastrointestinal cancer. Ferritinophagy is a form of selective autophagy that is mediated by the nuclear receptor coactivator 4 (NCOA4). This process plays a crucial role in regulating cellular iron homeostasis and has been implicated in various pathological conditions, including cancer. This review discusses the molecular mechanisms underlying ferritinophagy and its relevance to gastrointestinal cancer. Furthermore, we highlight the potential therapeutic implications of targeting ferritinophagy in gastrointestinal cancer. Several approaches have been proposed to modulate ferritinophagy, including small molecule inhibitors and immunotherapeutic strategies. We discuss the advantages and challenges associated with these therapeutic interventions and provide insights into their potential clinical applications.


Subject(s)
Autophagy , Ferritins , Gastrointestinal Neoplasms , Nuclear Receptor Coactivators , Humans , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Ferritins/metabolism , Autophagy/drug effects , Animals , Nuclear Receptor Coactivators/metabolism , Iron/metabolism , Homeostasis
10.
Heliyon ; 10(7): e27739, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560164

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.

11.
Asian J Androl ; 26(3): 308-314, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639721

ABSTRACT

At the end of 2022, the adjustment of the coronavirus disease 2019 (COVID-19) pandemic control policy in China resulted in a large-scale increase in public infection. To compare the fertility parameters of male patients before and after the adjustments of the COVID-19 pandemic control policy in China, we collected data on patients' medical histories and laboratory examinations on their first visits between June 2022 and March 2023 in five different hospitals. Data were divided into five groups according to the timeline of the policy adjustment. The data we collected from male patients included semen quality and serum reproductive hormone levels, and intergroup comparisons were made using the Mann-Whitney U and Chi-square tests. In total, 16 784 cases underwent regular semen analysis, 11 180 had sperm morphology assessments, and 7200 had reproductive hormone analyses. The data showed declining trends in semen volume, sperm motility, and the progressive sperm motility rate after the policy adjustment. Subgroup comparison revealed an initial decrease and gradual recovery in progressive motility rate. Sperm morphology analysis showed increased neck and tail abnormalities after the policy adjustment. No significant change in hormone levels was observed. Following the adjustment of the COVID-19 prevention policy in China, a decline in sperm motility and morphology was observed. This trend may gradually recover over 2 months. After the policy adjustment, reproductive hormone levels were relatively stable throughout, except for an increase in luteinizing hormone (LH). These changes in semen parameters suggest that the policy adjustment had a short- to medium-term impact on male reproductive function.


Subject(s)
COVID-19 , Semen Analysis , Sperm Motility , Humans , Male , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Adult , SARS-CoV-2 , Middle Aged , Luteinizing Hormone/blood , Testosterone/blood , Spermatozoa , Infertility, Male/prevention & control , Follicle Stimulating Hormone/blood
12.
Am J Cancer Res ; 14(2): 630-642, 2024.
Article in English | MEDLINE | ID: mdl-38455424

ABSTRACT

DEC1 is a helix-loop-helix (bHLH) transcription factor, whose deregulation has been observed in several tumors. However, the effects of the dysregulation of this gene on epithelial-mesenchymal transition (EMT) are controversial, with its roles in gastric cancer (GC) remaining unclear. In the present study, we focused on the impact of DEC1 on EMT and cell mobility in gastric cancer. We found that DEC1 expression positively correlated with TGF-ß1 and EMT markers in tumor issues, and that DEC1 facilitated TGF-ß1-induced EMT in gastric cancer. In addition, gastric cancer cell migration potential was reduced after DEC1 knockdown. Using murine metastasis models, we confirmed that DEC1 promoted GC metastasis and further explored the correlation of DEC1 with TGF-ß1 and E-cadherin in vivo. Chromatin immunoprecipitation (ChIP) assays revealed that DEC1 could directly interact with the promoter region of TGF-ß1. These results suggest that DEC1 functions as a tumor enhancer that partially participates in TGF-ß1-mediated EMT processes in GC, thus contributing to tumor metastasis.

13.
Biomed Pharmacother ; 173: 116333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479177

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.


Subject(s)
Carcinoma, Hepatocellular , Non-alcoholic Fatty Liver Disease , Humans , Liver Cirrhosis , Immunomodulation , Immunity
14.
J Agric Food Chem ; 72(12): 6178-6188, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483540

ABSTRACT

Ferroptosis holds great potential as a therapeutic approach for gastric cancer (GC), a prevalent and deadly malignant tumor associated with high rates of incidence and mortality. Myricetin, well-known for its multifaceted biomedical attributes, particularly its anticancer properties, has yet to be thoroughly investigated regarding its involvement in ferroptosis. The aim of this research was to elucidate the impact of myricetin on ferroptosis in GC progression. The present study observed that myricetin could trigger ferroptosis in GC cells by enhancing malondialdehyde production and Fe2+ accumulation while suppressing glutathione levels. Mechanistically, myricetin directly interacted with NADPH oxidase 4 (NOX4), influencing its stability by inhibiting its ubiquitin degradation. Moreover, myricetin regulated the inhibition of ferroptosis induced by Helicobacter pylori cytotoxin-associated gene A (CagA) through the NOX4/NRF2/GPX4 pathway. In vivo experiments demonstrated that myricetin treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice. It was accompanied by increased NOX4 expression in tumor tissue and suppression of the NRF2/GPX4 antioxidant pathway. Therefore, this research underscores myricetin as a novel inducer of ferroptosis in GC cells through its interaction with NOX4. It is a promising candidate for GC treatment.


Subject(s)
Ferroptosis , Flavonoids , Stomach Neoplasms , Animals , Mice , NADPH Oxidase 4 , Mice, Nude , NF-E2-Related Factor 2
15.
Adv Biol (Weinh) ; 8(4): e2300534, 2024 04.
Article in English | MEDLINE | ID: mdl-38314942

ABSTRACT

N6-methyladenosine (m6A) modification is involved in many aspects of gastric cancer (GC). Moreover, m6A and glycolysis-related genes (GRGs) play important roles in immunotherapeutic and prognostic implication of GC. However, GRGs involved in m6A regulation have never been analyzed comprehensively in GC. Herein, the study aims to identify and validate a novel signature based on m6A-related GRGs in GC patients. Therefore, a m6A-related GRGs signature is established, which can predict the survival of patients with GC and remain an independent prognostic factor in multivariate analyses. Clinical significance of the model is well validated in internal cohort and independent validation cohort. In addition, the expression levels of risk model-related GRGs in clinical samples are validated. Consistent with the database results, all model genes are up-regulated in expression except DCN. After regrouping the patients based on this risk model, the study can effectively distinguish between them in respect to immune-cell infiltration microenvironment and immunotherapeutic response. Additionally, candidate drugs targeting risk model-related GRGs are confirmed. Finally, a nomogram combining risk scores and clinical parameters is created, and calibration plots show that the nomogram can accurately predict survival. This risk model can serve as a reliable assessment tool for predicting prognosis and immunotherapeutic responses in GC patients.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Prognosis , Genes, Regulator , Nomograms , Immunotherapy , Tumor Microenvironment/genetics
16.
Cell Commun Signal ; 22(1): 110, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347544

ABSTRACT

The phenomenon of phase separation is quite common in cells, and it is involved in multiple processes of life activities. However, the current research on the correlation between protein modifications and phase separation and the interference with the tendency of phase separation has some limitations. Here we focus on several post-translational modifications of proteins, including protein phosphorylation modification at multiple sites, methylation modification, acetylation modification, ubiquitination modification, SUMOylation modification, etc., which regulate the formation of phase separation and the stability of phase separation structure through multivalent interactions. This regulatory role is closely related to the development of neurodegenerative diseases, tumors, viral infections, and other diseases, and also plays essential functions in environmental stress, DNA damage repair, transcriptional regulation, signal transduction, and cell homeostasis of living organisms, which provides an idea to explore the interaction between novel protein post-translational modifications and phase separation. Video Abstract.


Subject(s)
Phase Separation , Protein Processing, Post-Translational , Ubiquitination , Phosphorylation , Proteins , Acetylation
17.
Cancer Lett ; 587: 216680, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38346584

ABSTRACT

Metabolic reprogramming is a typical hallmark of cancer. Enhanced glycolysis in tumor cells leads to the accumulation of lactate, which is traditionally considered metabolic waste. With the development of high-resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), the lactate-derived, lysine lactylation(Kla), has been identified. Kla can alter the spatial configuration of chromatin and regulate the expression of corresponding genes. Metabolic reprogramming and epigenetic remodeling have been extensively linked. Accumulating studies have subsequently expanded the framework on the key roles of this protein translational modification (PTM) in tumors and have provided a new concept of cancer-specific regulation by Kla.


Subject(s)
Lysine , Neoplasms , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Lactic Acid , Neoplasms/genetics
18.
Angew Chem Int Ed Engl ; 63(19): e202400551, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38416545

ABSTRACT

Detecting low-frequency DNA mutations hotspots cluster is critical for cancer diagnosis but remains challenging. Quantitative PCR (qPCR) is constrained by sensitivity, and allele-specific PCR is restricted by throughput. Here we develop a long blocker displacement amplification (LBDA) coupled with qPCR for ultrasensitive and multiplexed variants detection. By designing long blocker oligos to perfectly match wildtype sequences while mispairing with mutants, long blockers enable 14-44 nt enrichment regions which is 2-fold longer than normal BDA in the experiments. For wild template with a specific nucleotide, LBDA can detect different mutation types down to 0.5 % variant allele frequency (VAF) in one reaction, with median enrichment fold of 1,000 on 21 mutant DNA templates compared to the wild type. We applied LBDA-qPCR to detect KRAS and NRAS mutation hotspots, utilizing a single plex assay capable of covering 81 mutations and tested in synthetic templates and colorectal cancer tissue samples. Moreover, the mutation types were verified through Sanger sequencing, demonstrating concordance with results obtained from next generation sequencing. Overall, LBDA-qPCR provides a simple yet ultrasensitive approach for multiplexed detection of low VAF mutations hotspots, presenting a powerful tool for cancer diagnosis and monitoring.


Subject(s)
Mutation , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Membrane Proteins/genetics , Nucleic Acid Amplification Techniques/methods , GTP Phosphohydrolases/genetics
19.
Chem Commun (Camb) ; 60(20): 2780-2783, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38358368

ABSTRACT

A novel method enhances tryptophan fluorescence signals 5.45 times using a corrosion-modified magnesium alloy. Corrosion controls and stabilizes the surface morphology, resulting in a significant fluorescence enhancement. This highlights its biosensing potential with long-term stability, crucial for understanding the impact of tryptophan on metabolic and neurological disorders.

20.
Heliyon ; 10(1): e23919, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38223735

ABSTRACT

Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.

SELECTION OF CITATIONS
SEARCH DETAIL