Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 663
Filter
1.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003055

ABSTRACT

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Subject(s)
Metals, Heavy , Soil Pollutants , Water Pollutants, Chemical , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Soil Pollutants/metabolism , Oxidation-Reduction , Pseudomonas/metabolism , Manganese , Iron/chemistry , Iron/metabolism , Soil/chemistry , Biodegradation, Environmental , Soil Microbiology
2.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4407-4419, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307777

ABSTRACT

The MYB(v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors is the largest class of genes among higher plant transcription factors, which can be divided into four subfamilies, with the R2R3-MYB being the most common subfamily type. R2R3-MYB transcription factors are widely involved in the regulation of organ development and secondary metabolite biosynthesis in plants. To investigate the role of R2R3-MYB family transcription factors in the synthesis of flavonoids and glandular trichome development in Artemisia argyi, this study screened and identified 92 R2R3-MYB transcription factors based on the whole genome data of A. argyi, and predicted their potential functions based on bioinformatics. The results showed that the amino acid lengths of the 92 transcription factors ranged from 168 to 547 aa, with relative molecular weights ranging from 19. 6 to 60. 5 kDa, all of which were hydrophilic proteins. Subcellular localization analysis showed that 89 AaMYB proteins were located in the nucleus, while three proteins were simultaneously located in the nucleus and cytoplasm. According to the classification of Arabidopsis R2R3-MYB family, the 92 A. argyi R2R3-MYB proteins were divided into 26 subfamilies, with similar gene structures within the same subfamily.Cis-acting element prediction results showed that light-responsive elements, methyl jasmonate elements, and abscisic acid elements were widely distributed in the promoter regions of R2R3-MYB genes. Transcriptome expression analysis results showed that the expression of AaMYB60, AaMYB63, and AaMYB86 in leaves was higher than that in stems and roots, indicating that these three transcription factors mainly function in leaves. Additionally, five candidate R2R3-MYB transcription factors involved in A. argyi flavonoid biosynthesis or glandular trichome development were selected through phylogenetic analysis. This study provides important genetic resources for the breeding of superior varieties and germplasm innovation of A. argyi in the future.


Subject(s)
Artemisia , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Artemisia/genetics , Artemisia/metabolism , Artemisia/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Amino Acid Sequence
3.
Nanoscale Adv ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39309514

ABSTRACT

Superhydrophobic polyurethanes offer robust hydrophobicity and corrosion resistance. However, it is essential to consider the durability and environmental constraints associated with these materials. This study prepared a bio-based superhydrophobic polyurethane coating film using epoxidized soybean oil, superhydrophobically modified silica nanoparticles, and OH-PDMS-OH as surface modifiers. The coating film exhibited sustained super-hydrophobicity and an excellent antifouling effect for pu-erh tea and edible oils, among other substances, after 14 days of immersion in solutions with different pH values, 28 days of exposure to air, and 2000 abrasion cycles. This finding can be applied to the development of daily indoor and outdoor antifouling protective coatings and provides a new method for the preparation of green and durable superhydrophobic antifouling coating films.

4.
Sci Rep ; 14(1): 20816, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39242593

ABSTRACT

The impact of premade beef patty (BBP) with red onion skin powder (OSP) at 0, 1, 2, and 3% levels on color, lipid, and protein oxidative stability, and infection degree of microorganisms during cold storage was investigated. The objective was to determine the effect of color by L*, a*, b*, and the content of MetMb. The inhibitory effect of OSP on the oxidation of lipid and protein was studied based on TBARS and the carbonyl content of protein in samples at different storage times. TVB-N content was used to characterize the degree of infection of microorganisms and their effect on meat quality. The results showed that the addition of OSP reduced the pH, L *, a*, and b * values of BBP, and improved the hardness, springiness, gumminess, and cohesiveness of BBP, but had no significant effect on the chewiness of BBP (p > 0.05). After 12 days of storage, the carbonyl group and TBARS content in the BBP supplemented with 3%OSP was significantly lower than that in the control group (p < 0.05). Furthermore, the addition of OSP significantly inhibited the TVB-N increase during beef patty storage. These results indicated that OSP has a good research prospect as a natural antioxidant or preservative.


Subject(s)
Color , Food Storage , Onions , Oxidation-Reduction , Onions/chemistry , Animals , Cattle , Food Storage/methods , Powders , Lipids/chemistry , Red Meat/analysis , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Cold Temperature , Food Preservation/methods
5.
Drug Metab Dispos ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261014

ABSTRACT

Antifolates are important for chemotherapy in non-small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Km value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0 - 7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors. Significance Statement Evaluating the role of RFC and PCFT on antifolates accumulation in NSCLC is necessary for new drug designs. By using RFC- or PCFT-expressing NSCLC cell models, we found that both RFC and PCFT were important for antifolates accumulation in NSCLC, rather than only PCFT playing a dominant role. BCRP significantly affected PCFT-mediated antifolates accumulation at acidic pH, but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed.

6.
Front Immunol ; 15: 1467531, 2024.
Article in English | MEDLINE | ID: mdl-39290692

ABSTRACT

Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.


Subject(s)
Amino Acid Transport System y+ , Wound Healing , Humans , Animals , Amino Acid Transport System y+/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Oxidative Stress , Diabetes Mellitus/metabolism , Diabetes Mellitus/immunology , Diabetes Complications/metabolism
7.
Sensors (Basel) ; 24(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39275570

ABSTRACT

Vehicle detection in remote sensing images is a crucial aspect of intelligent transportation systems. It plays an essential role in road planning, congestion control, and road construction in cities. However, detecting vehicles in remote sensing images is challenging due to their small size, high density, and noise. Most current detectors that perform well in conventional scenes fail to achieve better results in this context. Thus, we propose a quad-layer decoupled network to improve the algorithm's performance in detecting vehicles in remote sensing scenes. This is achieved by introducing modules such as a Group Focus downsampling structure, a quad-layer decoupled detector, and the GTAA label assignment method. Experiments demonstrate that the designed algorithm achieves a mean average precision (mAP) of 49.4 and operates at a speed of 3.0 ms on the RTX3090 within a multi-class vehicle detection dataset constructed based on the xView dataset. It outperforms various real-time detectors in terms of detection accuracy and speed.

8.
Sci Rep ; 14(1): 21267, 2024 09 11.
Article in English | MEDLINE | ID: mdl-39261504

ABSTRACT

Pomacea canaliculata is one of the most successful invader in worldwide, adversely affecting native ecosystem through direct predation or indirect competition, while the mechanism of indirect effects on native species remain poorly understood. To clarify the effects of P. canaliculata on the native near-niche species, Bellamya purificata, a widespread freshwater gastropod in China, was selected as the research subject. The changes of mortality, histology, antioxidant system as well as the intestinal flora diversity of B. purificata were explored in present study. The results showed that the median lethal dose of P. canaliculata culture solution for B. purificata was 23.76 ind/L and a concentration-dependent damage of both the gonad and hepatopancreas were observed, the gonadal villi were dissolved and the hepatopancreas cells were broken at 20 ind/L. Furthermore, different concentrations of P. canaliculata culture solution leading to the antioxidant damage on the enzyme or non-enzyme systems of B. purificata at various degrees. Additionally, a decrease in the diversity of the intestinal flora was observed, accompanied by an increase in the abundance of pathogenic bacteria such as Pseudomonas and Aeromonas after the exposure of the culture solution of P. canaliculata. Last, after being recovered in freshwater for 24 h, the antioxidant damage of B. purificata and the disturbance of intestinal flora diversity were still not recovered especially in the high concentration group. The indirect competitive mechanism of P. canaliculata culture solution on B. purificata were explored from the aspects of tissue, biochemical level and intestinal flora, which enriched the research of P. canaliculata invasion on native snails in China, and provided new insights for the study of the invasion strategy of P. canaliculata.


Subject(s)
Antioxidants , Gastrointestinal Microbiome , Snails , Animals , Snails/microbiology , Antioxidants/metabolism , Hepatopancreas/microbiology , Hepatopancreas/metabolism , Hepatopancreas/pathology , Introduced Species , China
9.
Front Pediatr ; 12: 1425874, 2024.
Article in English | MEDLINE | ID: mdl-39228435

ABSTRACT

Introduction: Systemic lupus erythematosus is a multi-faceted autoimmune disorder of complex etiology. Pre-pubertal onset of pediatric systemic lupus erythematosus (pSLE) is uncommon and should raise suspicion for a genetic driver of disease. Autosomal recessive p40 phox deficiency is a rare immunologic disorder characterized by defective but not abolished NADPH oxidase activity with residual production of reactive oxygen species (ROS) by phagocytic cells. Case presentation: We report the case of a now 18-year-old female with pSLE onset at 7 years of age. She presented with recurrent fever and malar rash. Aspects of her immune dysregulation over time have included typical pSLE features including production of autoantibodies, hematologic manifestations, and hypocomplementemia, as well as chronic suppurative skin lesions and recurrent infections. Genetic analysis revealed biallelic pathogenic variants in NCF4 resulting in p40 phox deficiency. Comprehensive NADPH oxidase activity studies confirmed significantly decreased production of reactive oxygen species, confirming the cellular phenotype seen in p40 phox deficient patients. Conclusions: Here, we present a patient with pSLE harboring biallelic variants in NCF4. Our patient represents a unique clinical presentation of severe onset autoimmunity in the setting of a rare inborn error of immunity affecting NADPH oxidase activity. This case underscores the need to consider genetic causes of pSLE in cases of pre-pubertal onset and atypical disease.

10.
iScience ; 27(9): 110572, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39228788

ABSTRACT

Sepsis-induced arrhythmia, linked to sudden cardiac death, is associated with gut microbiota, though the exact relationship is unclear. This study aimed to elucidate the relationship between Cronobacter sakazakii (C. sakazakii) and arrhythmia. The relative abundance of C. sakazakii was increased in cecal ligation and puncture (CLP)-induced septic mice. Live C. sakazakii, supernatant, and outer membrane vesicles (OMVs) resulted in premature ventricular beat (PVB), sinus arrhythmia (SA), and increased arrhythmia and mortality in sepsis model through dysregulated ion channel proteins. Moreover, short-chain fatty acids (SCFAs) showed antibacterial effects in vitro. We confirmed sodium acetate (C2) and sodium butyrate (C4) protect from C. sakazakii-induced arrhythmia, and C2 and C4 protected from septic arrhythmia by activating free fatty acid receptor 2 and 3 (FFAR2 and FFAR3) in mice. These findings point to how C. sakazakii's OMVs trigger arrhythmia, and SCFAs may be a treatment for septic arrhythmia.

11.
Front Immunol ; 15: 1450440, 2024.
Article in English | MEDLINE | ID: mdl-39229271

ABSTRACT

Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.


Subject(s)
Diabetes Mellitus, Type 2 , Inflammation , Macrophages , Wound Healing , Wound Healing/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Animals , Inflammation/immunology , Inflammation/metabolism , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Histone Code , Histones/metabolism
12.
ACS Appl Mater Interfaces ; 16(37): 49349-49361, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230248

ABSTRACT

With the intensification of global environmental pollution and resource scarcity, hydrogen has garnered significant attention as an ideal alternative to fossil fuels due to its high energy density and nonpolluting nature. Consequently, the urgent development of electrocatalytic water-splitting electrodes for hydrogen production is imperative. In this study, a superwetting selenide catalytic electrode with a peony-flower-shaped micronano array (MoS2/Co0.8Fe0.2Se2/NixSey/nickel foam (NF)) was synthesized on NF via a two-step hydrothermal method. The optimal catalytic activity of cobalt-iron selenide was achieved by adjusting the Co/Fe ratio. The intrinsic catalytic activity of the electrodes was enhanced by incorporating transition metal selenides, which then served as a precursor for the subsequent loading of MoS2 nanoflowers on the surface to fully expose the active sites. Furthermore, the superwetting properties of the electrode accelerated electrolyte penetration and electron/mass transfer, while also facilitating bubble detachment from the electrode surface, thereby preventing "bubble shielding effect". This resulted in superior oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance, as well as overall water splitting capabilities. In a 1.0 M KOH solution, the electrode required only 166 and 195 mV overpotential to achieve a current density of 10 mA cm-2 for OER and HER, respectively. When functioning as a bifunctional catalytic electrode, only 1.60 V of voltage was necessary to drive the electrolyzer to reach a current density of 10 mA cm-2. Moreover, laboratory simulations of wind and solar energy-driven water splitting validated the feasibility of establishing a sustainable energy-to-hydrogen production chain. This work provides new insights into the preparation of low-overpotential, high-catalytic-activity superhydrophilic and underwater superaerophobic catalytic electrodes by rationally adjusting elemental ratios and exploring changes in electrode surface wettability.

13.
Environ Sci Pollut Res Int ; 31(44): 56363-56376, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39271610

ABSTRACT

A field survey was conducted in the central Tibetan Plateau (Nam Co) in China for high-time resolution measurements of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (PBM). Average concentrations (± 1 SD) of GEM, PBM, and GOM from November 2014 to March 2015 were 1.11 ± 0.20 ng m-3, 50.8 ± 26.5 pg m-3, and 3.6 ± 3.2 pg m-3, respectively. During the monitoring period, both GEM and GOM exhibited relative stability in their monthly variations, whereas PBM concentrations were significantly higher in winter compared to those in later autumn and early spring. In terms of diurnal variations, the maximum concentration of GEM was typically observed after sunrise, while PBM reached its peak before sunrise, and the highest concentration of GOM was recorded in the afternoon. Vertical convection conditions, photochemical production, and gas-particle partitioning were responsible for the diurnal cycle of atmospheric mercury. Based on modeling results, it was determined that the air mass transported from South Asia significantly impacted atmospheric mercury levels at Nam Co Station. The regions of western and central Nepal, central and eastern Pakistan, and northern India were identified as potential sources of atmospheric mercury at Nam Co.


Subject(s)
Air Pollutants , Atmosphere , Environmental Monitoring , Mercury , Mercury/analysis , Air Pollutants/analysis , Tibet , Atmosphere/chemistry , China
14.
Mater Horiz ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221913

ABSTRACT

Conductive organohydrogels are promising for strain sensing, while their weak mechanical properties, poor crack propagation resistance and unstable sensing signals during long-term use have seriously limited their applications as high-performance strain sensors. Here, we propose a facile method, i.e., solvent exchange assisted hot-pressing, to prepare strong yet tough, transparent and anti-fatigue ionically conductive organohydrogels (ICOHs). The densified polymeric network and improved crystallinity endow ICOHs with excellent mechanical properties. The tensile strength, toughness, fracture energy and fatigue threshold of ICOHs can reach 36.12 ± 4.15 MPa, 54.57 ± 2.89 MJ m-3, 43.44 ± 8.54 kJ m-2 and 1212.86 ± 57.20 J m-2, respectively, with a satisfactory fracture strain of 266 ± 33%. In addition, ICOH strain sensors with freezing and drying resistance exhibit excellent cycling stability (10 000 cycles). More importantly, the fatigue resistance allows the notched strain sensor to work normally with no crack propagation and output stable and reliable sensing signals. Overall, the unique flaw-insensitive strain sensing makes ICOHs promising in the field of wearable and durable electronics.

15.
Int J Biol Macromol ; 278(Pt 3): 134785, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153668

ABSTRACT

Probiotics regulate intestinal flora balance and enhance the intestinal barrier, which is useful in preventing and treating colitis. However, they have strict storage requirements. In addition, they degrade in a strongly acidic environment, resulting in a significant decrease in their activity when used as microbial agents. Lactobacillus rhamnosus GG (LGG) was loaded into acid-resistant and colon-targeting double-layer microgels. The inner layer consists of guar gum (GG) and low methoxyl pectin (LMP), which can achieve retention and degradation in the colon. To achieve colon localization, the outer layer was composed of chitosan (CS) and sodium alginate (SA). The formulation demonstrated favorable bio-responses across various pH conditions in vitro and sustained release of LGG in the colon lesions. Bare LGG survival decreased by 52.2 % in simulated gastric juice (pH 1.2) for 2 h, whereas that of encapsulated LGG decreased by 18.5 %. In the DSS-induced inflammatory model, LGG-loaded microgel significantly alleviated UC symptoms in mice and reduced inflammatory factor levels in the colon. Encapsulation of LGG improved its stability in acidic conditions, thus increasing its content at the colon lesions and reducing pathogenic bacteria. These findings provide an experimental basis and a technical reference for developing and applying probiotic microgel preparations.


Subject(s)
Alginates , Chitosan , Colitis, Ulcerative , Lacticaseibacillus rhamnosus , Microgels , Alginates/chemistry , Chitosan/chemistry , Animals , Microgels/chemistry , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/therapy , Administration, Oral , Probiotics/administration & dosage , Colon/pathology , Colon/microbiology , Colon/metabolism , Colon/drug effects , Galactans/chemistry , Plant Gums/chemistry , Hydrogen-Ion Concentration , Male , Disease Models, Animal , Dextran Sulfate , Pectins/chemistry , Mannans
16.
Phytother Res ; 38(8): 4151-4167, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39136618

ABSTRACT

Despite active clinical trials on the use of Oleandrin alone or in combination with other drugs for the treatment of solid tumors, the potential synergistic effect of Oleandrin with radiotherapy remains unknown. This study reveals a new mechanism by which Oleandrin targets ATM and ATR kinase-mediated radiosensitization in lung cancer. Various assays, including clonogenic, Comet, immunofluorescence staining, apoptosis and Cell cycle assays, were conducted to evaluate the impact of oleandrin on radiation-induced double-strand break repair and cell cycle distribution. Western blot analysis was utilized to investigate alterations in signal transduction pathways related to double-strand break repair. The efficacy and toxicity of the combined therapy were assessed in a preclinical xenotransplantation model. Functionally, Oleandrin weakens the DNA damage repair ability and enhances the radiation sensitivity of lung cells. Mechanistically, Oleandrin inhibits ATM and ATR kinase activities, blocking the transmission of ATM-CHK2 and ATR-CHK1 cell cycle checkpoint signaling axes. This accelerates the passage of tumor cells through the G2 phase after radiotherapy, substantially facilitating the rapid entry of large numbers of inadequately repaired cells into mitosis and ultimately triggering mitotic catastrophe. The combined treatment of Oleandrin and radiotherapy demonstrated superior inhibition of tumor proliferation compared to either treatment alone. Our findings highlight Oleandrin as a novel and effective inhibitor of ATM and ATR kinase, offering new possibilities for the development of clinical radiosensitizing adjuvants.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Cardenolides , DNA Damage , Lung Neoplasms , Ataxia Telangiectasia Mutated Proteins/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Animals , Cardenolides/pharmacology , DNA Damage/drug effects , Cell Line, Tumor , Mice , Radiation Tolerance/drug effects , Signal Transduction/drug effects , Apoptosis/drug effects , Radiation-Sensitizing Agents/pharmacology , Mice, Nude , Xenograft Model Antitumor Assays , DNA Repair/drug effects , Cell Proliferation/drug effects , A549 Cells
17.
Heliyon ; 10(15): e35766, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170451

ABSTRACT

Autogenous arteriovenous fistula (AVF) is considered the preferred vascular access choice for individuals undergoing maintenance hemodialysis (MHD) and is widely utilized in China, as reported by the Dialysis Outcomes and Practice Patterns Study. Despite its popularity, the significant incidence of poor AVF maturation often leads to the need for central venous catheter insertion, increasing the risk of complications like superior vena cava stenosis and catheter-related infections, which in turn raises the overall mortality risk. With the prevalence of diabetes rising globally among the elderly and diabetic kidney disease being a leading cause of end-stage renal disease necessitating renal replacement therapy, our retrospective review aims to explore the various factors affecting AVF maturation in this specific patient population. While there have been numerous studies examining AVF complications in MHD patients, including issues like failure, patency loss, stenosis, thrombosis, poor maturation, and other influencing factors, there remains a gap in large-scale clinical studies focusing on the incidence and risk factors for immature AVF specifically in elderly diabetic patients. This paper delves into the pathophysiological mechanisms, diagnostic criteria, and unique considerations surrounding AVF maturation in elderly diabetic patients, distinguishing them from the general population. Our literature review reveals that elderly diabetic patients exhibit a higher risk of AVF immaturity compared to the general population. Additionally, there exists a continuing discourse regarding several aspects related to this group, including the choice of dialysis access, timing of AVF surgery, and surgical site selection. Furthermore, we delve into the management strategies for vascular access within this specific group with the goal of providing evidence-based guidance for the establishment and maintenance of functional vascular access in elderly diabetic patients.

18.
Cancer Lett ; 600: 217158, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39111385

ABSTRACT

Acute myeloid leukemia (AML) arises from leukemia stem cells (LSCs) and is maintained by cells which have acquired features of stemness. We compared transcription profiles of AML cells with/without stem cell features defined as in vitro clonogenicity and serial engraftment in immune-deficient mice xenograft model. We used multi-parameter flow cytometry (MPFC) to separate CD34+ bone marrow-derived leukemia cells into sphingosine-1 phosphate receptor 1 (S1PR1)+ and S1PR1- fractions. Cells in the S1PR1+ fraction demonstrated significantly higher clonogenicity and higher engraftment potential compared with those in the S1PR1- fraction. In contrast, CD34+ bone marrow cells from normal samples showed reduced clonogenicity in the S1PR1+ fraction compared with the S1PR1- fraction. Inhibition of S1PR1 expression in an AML cell line reduced the colony-forming potential of KG1 cells. Transcriptomic analyses and rescue experiments indicated PI3K/AKT pathway and MYBL2 are downstream mediators of S1PR1-associated stemness. These findings implicate S1PR1 as a functional biomarker of LSCs and suggest its potential as a therapeutic target in AML treatment.


Subject(s)
Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Sphingosine-1-Phosphate Receptors , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Humans , Animals , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Cell Line, Tumor , Signal Transduction , Male , Female , Mice, Inbred NOD , Gene Expression Regulation, Leukemic
19.
Neuroscience ; 557: 24-36, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39128700

ABSTRACT

OBJECTIVE: This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS: A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS: In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION: This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.


Subject(s)
Depression , Disease Models, Animal , Electroacupuncture , Gastrointestinal Microbiome , Rats, Sprague-Dawley , Stress, Psychological , Animals , Electroacupuncture/methods , Gastrointestinal Microbiome/physiology , Male , Stress, Psychological/therapy , Stress, Psychological/microbiology , Stress, Psychological/metabolism , Depression/therapy , Depression/microbiology , Hippocampus/metabolism , Rats , Serotonin/metabolism , Behavior, Animal/physiology , Lipid Metabolism/physiology
20.
ACS Appl Mater Interfaces ; 16(36): 48139-48146, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39197856

ABSTRACT

Traditional diagnostic methods, such as blood tests, are invasive and time-consuming, while sweat biomarkers offer a rapid physiological assessment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention in sweat analysis because of its high sensitivity, label-free nature, and nondestructive properties. However, challenges related to substrate reproducibility and interference from the biological matrix persist with SERS. This study developed a novel ratio-based 3D hydrogel SERS chip, providing a noninvasive solution for real-time monitoring of pH and glucose levels in sweat. Encapsulating the probe molecule (4-MBN) in nanoscale gaps to form gold nanoflower-like nanotags with internal standards and integrating them into an agarose hydrogel to create a 3D flexible SERS substrate significantly enhances the reproducibility and stability of sweat analysis. Gap-Au nanopetals modified with probe molecules are uniformly dispersed throughout the porous hydrogel structure, facilitating the effective detection of the pH and glucose in sweat. The 3D hydrogel SERS chip demonstrates a strong linear relationship in pH and glucose detection, with a pH response range of 5.5-8.0 and a glucose detection range of 0.01-5 mM, with R2 values of 0.9973 and 0.9923, respectively. In actual sweat samples, the maximum error in pH detection accuracy is only 1.13%, with a lower glucose detection limit of 0.25 mM. This study suggests that the ratio-based 3D hydrogel SERS chip provides convenient, reliable, and rapid detection capabilities with substantial application potential for analyzing body fluid pH and glucose.


Subject(s)
Glucose , Gold , Hydrogels , Spectrum Analysis, Raman , Sweat , Spectrum Analysis, Raman/methods , Hydrogen-Ion Concentration , Sweat/chemistry , Humans , Glucose/analysis , Glucose/chemistry , Hydrogels/chemistry , Gold/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL