Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Food Chem ; 460(Pt 3): 140809, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39142203

ABSTRACT

The formation conditions and functional property differences of esterified starch (ES) and granular esterified-pregelatinized starch (EPS) synchronously prepared by octenyl succinic anhydride (OSA) modification remain unclear. In this study, we explored the formation conditions and physicochemical properties of ES and EPS after OSA modification. The modification temperature controlled the formation amount and time for both starch types during OSA modification. Compared to ES, EPS exhibited a higher degree of substitution, cold-water swelling power, water-absorption capacity and apparent viscosity in cold water. The structural characterization confirmed the molecular weight and short/long-range molecular order of ES and EPS decreased. Moreover, scanning electron microscopy indicated EPS retained its granular morphology. The X-ray diffraction patterns confirmed the presence of more starch-lipid complexes formed in EPS than in ES. This study provides a novel method for preparing esterified and granularly esterified-pregelatinized starches that could be used as promising additives in low-energy formula foods.

2.
Int J Med Sci ; 21(10): 1976-1989, 2024.
Article in English | MEDLINE | ID: mdl-39113895

ABSTRACT

Aortic aneurysm and dissection (AD) represent a critical cardiovascular emergency with an alarmingly high mortality rate. Recent research has spotlighted the overexpression of genes associated with the m6A modification in AD patients, linking them to the presence of inflammatory M1-type macrophages. Moreover, glycolysis is widely recognized as a key feature of inflammatory M1-type macrophages, but biomarkers linking glycolysis and macrophage function to promote disease progression in AD have not been reported. We conducted an analysis of aortic immune cell infiltration, macrophages, and m6A-related biomarkers in AD patients using bioinformatics techniques. Subsequently, we employed a combination of RT-PCR, WB, and immunofluorescence assays to elucidate the alterations in the expression of M1- and M2-type macrophages, as well as markers of glycolysis, following the overexpression of key biomarkers. These findings were further validated in vivo through the creation of a rat model of AD with knockdown of the aforementioned key biomarkers. The findings revealed that the m6A-modified related gene RBM15 exhibited heightened expression in AD samples and was correlated with macrophage polarization. Upon overexpression of RBM15 in macrophages, there was an observed increase in the expression of M1-type macrophage markers CXCL9 and CXCL10, alongside a decrease in the expression of M2-type macrophage markers CCL13 and MRC1. Furthermore, there was an elevation in the expression of glycolytic enzymes GLUT1 and Hexokinase, as well as HIF1α, GAPDH, and PFKFB3 after RBM15 overexpression. Moreover, in vivo knockdown of RBM15 led to an amelioration of aortic aneurysm in the rat AD model. This knockdown also resulted in a reduction of the M1-type macrophage marker iNOS, while significantly increasing the expression of the M2-type macrophage marker CD206. In conclusion, our findings demonstrate that RBM15 upregulates glycolysis in macrophages, thus contributing to the progression of AD through the promotion of M1-type macrophage polarization. Conversely, downregulation of RBM15 suppresses M1-type macrophage polarization, thereby decelerating the advancement of AD. These results unveil potential novel targets for the treatment of AD.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Disease Progression , Glycolysis , Macrophages , RNA-Binding Proteins , Glycolysis/genetics , Humans , Animals , Macrophages/metabolism , Macrophages/immunology , Rats , Aortic Dissection/pathology , Aortic Dissection/genetics , Aortic Dissection/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Male , Disease Models, Animal , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Biomarkers/metabolism , Chemokine CXCL9/metabolism , Chemokine CXCL9/genetics , Female , Adenosine/analogs & derivatives
3.
Int Immunopharmacol ; 140: 112854, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116494

ABSTRACT

The inflammation causes the destroyed osseointegration at the implant-bone interface, significantly increasing the probability of implant loosening in osteoporotic patients. Currently, inhibiting the differentiation of M1 macrophages and the inflammatory response could be a solution to stabilize the microenvironment of implants. Interestingly, some natural products have anti-inflammatory and anti-polarization effects, which could be a promising candidate for stabilizing the implants' microenvironment in osteoporotic patients. This research aims to explore the inhibitory effect of Urolithin B(UB) on macrophage M1 polarization, which ameliorates inflammation, thus alleviating implant instability. We established an osteoporosis mouse model of implant loosening. The mouse tissues were taken out for morphological analysis, staining analysis, and bone metabolic index analysis. In in vitro experiments, RAW264.7 cells were polarized to M1 macrophages using lipopolysaccharide (LPS) and analyzed by immunofluorescence (IF) staining, Western blot (WB), and flow cytometry. The CSP100 plus chip experiments were used to explore the potential mechanisms behind the inhibiting effects of UB. Through observation of these experiments, UB can improve the osseointegration between the implants and femurs in osteoporotic mice and enhance the stability of implants. The UB can inhibit the differentiation of M1 macrophages and local inflammation via inhibiting the phosphorylation of VEGFR2, which can be further proved by the weakened inhibited effects of UB in macrophages with lentivirus-induced overexpression of VEGFR2. Overall, UB can specifically inhibit the activation of VEGFR2, alleviate local inflammation, and improve the stability of implants in osteoporotic mice.

4.
ACS Appl Mater Interfaces ; 16(32): 42894-42904, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093917

ABSTRACT

In this study, a nonflammable all-fluorinated electrolyte for lithium-ion cells with a Li(Ni0.8Mn0.1Co0.1)O2 cathode is investigated under high voltages. This electrolyte, named FT46, consists of fluoroethylene carbonate (FEC) and bis(2,2,2-trifluoroethyl) carbonate (TFEC) in a mass ratio of 4:6. Compared to a commercially available electrolyte and several other fluorinated electrolytes, cells containing FT46 demonstrate significantly better cycling performances under high voltage (3.0-4.5 V). This result may be ascribed to the generation of a stable, smooth, and thin passivation layer and the improved solvation structure formed by FT46. The LiF-rich passivation layer strengthens the electrode/electrolyte interface, inhibits the degradation of the electrode, and suppresses side reactions between the electrodes and electrolytes under high voltage. The solvation structure formed by FT46 is derived from anions, enabling an enhanced Li+ migration rate and inhibiting lithium plating generation. Additionally, due to the nonflammability of the electrolyte and the stable passivation layers, FT46 cells also demonstrate promising safety characteristics when exposed to typical abusive conditions, such as thermal abuse, mechanical abuse, and electrical abuse.

5.
Cardiology ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053440

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a common arrhythmia, with radiofrequency catheter ablation (RFCA) being first-line therapy. However, the high rate of post-ablation recurrence necessitates the identification of predictors for recurrence risk. Left atrial low-voltage areas (LA-LVASs), reflecting atrial fibrosis, have been confirmed to be related to recurrence of atrial fibrillation. Recently, epicardial adipose tissue (EAT) has been studied due to its role in initiating and maintaining atrial fibrillation. In this study, we try to evaluate the significance of the combined use of LA-EAT and percentage of LA-LVAs (LA-LVAs%) for predicting the recurrence of atrial fibrillation. METHODS: A total of 387 patients with AF who had undergone RFCA for the first time were followed up for 3, 6, and 12 months. They were divided into two groups: the recurrence group (n=90) and the non-recurrence group (n=297). Before the ablation, all patients underwent computed tomography angiography (CTA) examination of the left atrium, and the left atrial epicardial adipose tissue (LA-EAT) was measured using medical software (Advantage Workstation 4.6, GE, USA). After circumferential pulmonary vein isolation, a three-dimensional mapping system was used to map the left atrial endocardium and evaluate the LA-LVAs in sinus rhythm. RESULTS: After a median follow-up of 10.2 months, 90 patients developed AF recurrence after RFCA. Compared to patients without recurrence, the volume of LA-EAT (33.45±13.65 vs. 26.27±11.38; p<0.001) and the LA-LVAs% (1.60% (0%, 9.99%) vs. 0.00% (0%, 2.46%); p<0.001) were significantly higher. Multivariate analysis indicated that non-paroxysmal AF, LA-EAT volume, and LA-LVAs% were independent predictors. Compared to LA-EAT volume (AUC 0.655; specificity 0.675; sensitivity 0.586) or LA-LVAs% (AUC 0.659; specificity 0.836; sensitivity 0.437), the combined use of LA-EAT volume and LA-LVAs% offers higher accuracy for predicting AF recurrence after ablation (AUC 0.738; specificity 0.761; sensitivity 0.621). CONCLUSION: The combined LA-EAT and LA-LVAs% can effectively predict the risk of AF recurrence after radiofrequency ablation.

6.
BMJ Open Ophthalmol ; 9(1)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969362

ABSTRACT

OBJECTIVES: This study aimed to quantitatively evaluate optic nerve head and retinal vascular parameters in children with hyperopia in relation to age and spherical equivalent refraction (SER) using artificial intelligence (AI)-based analysis of colour fundus photographs (CFP). METHODS AND ANALYSIS: This cross-sectional study included 324 children with hyperopia aged 3-12 years. Participants were divided into low hyperopia (SER+0.5 D to+2.0 D) and moderate-to-high hyperopia (SER≥+2.0 D) groups. Fundus parameters, such as optic disc area and mean vessel diameter, were automatically and quantitatively detected using AI. Significant variables (p<0.05) in the univariate analysis were included in a stepwise multiple linear regression. RESULTS: Overall, 324 children were included, 172 with low and 152 with moderate-to-high hyperopia. The median optic disc area and vessel diameter were 1.42 mm2 and 65.09 µm, respectively. Children with high hyperopia had larger superior neuroretinal rim (NRR) width and larger vessel diameter than those with low and moderate hyperopia. In the univariate analysis, axial length was significantly associated with smaller superior NRR width (ß=-3.030, p<0.001), smaller temporal NRR width (ß=-1.469, p=0.020) and smaller vessel diameter (ß=-0.076, p<0.001). A mild inverse correlation was observed between the optic disc area and vertical disc diameter with age. CONCLUSION: AI-based CFP analysis showed that children with high hyperopia had larger mean vessel diameter but smaller vertical cup-to-disc ratio than those with low hyperopia. This suggests that AI can provide quantitative data on fundus parameters in children with hyperopia.


Subject(s)
Artificial Intelligence , Hyperopia , Optic Disk , Photography , Retinal Vessels , Humans , Hyperopia/diagnosis , Hyperopia/physiopathology , Cross-Sectional Studies , Male , Child , Female , Child, Preschool , Optic Disk/diagnostic imaging , Optic Disk/pathology , Optic Disk/blood supply , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Photography/methods , Fundus Oculi , Visual Acuity/physiology , Refraction, Ocular/physiology
7.
Curr Probl Cardiol ; 49(10): 102759, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067720

ABSTRACT

OBJECTIVE: No study has systematically investigated the quality of long-term care delivered to the rural older people with chronic diseases, such as atrial fibrillation (AF) in China. This study aims to provide contemporary data on the prevalence and awareness of AF among the older population in rural China and to evaluate healthcare knowledge and delivery by village doctors. DESIGN: A cross-sectional study. SETTING: Rural villages in Daqiao and Xiaoji towns of Jiangsu Province, China. PARTICIPANTS: Rural population aged ≥65 years. OUTCOME MEASURES: AF was identified using 12-lead electrocardiography in the first-step (government-led health examination) and single-lead electrocardiography in the second-step (in-house AF screening). Questionnaire surveys were designed for the AF patients and their village doctors. RESULTS: Among 31,342 permanent residents, 12,630 (40.3 %) declined, 7,956 (25.3 %) participated in the first-step and 10,756 (34.3 %) in the second-step. The overall AF detection rate was 4.3 % (810/18,712). Of the 810 AF patients (mean age 76.1±5.9 years; 51.4 % female), 51.5 % were illiterate, only 2.6 % could use smartphone applications, and 8.1 % lived with their children. Common risk factors were older age, men, hypertension, diabetes, prior stroke, vascular disease, and congestive heart failure. Among the 402 patients with known AF, 367 were at high risk of stroke and 10.9 % (40/367) were anticoagulated. Only 17.6 % patients with known hypertension had blood pressure level <140/90 mmHg, and 6.0 % with known diabetes had a fasting blood glucose level ≤6.1 mmol/L. Only 7.3 % (9/122) village doctors reported having the knowledge of integrated care AF management. CONCLUSIONS: This study identified AF in 4.3 %, but AF management was suboptimal in rural China. The current village doctor-dominant rural healthcare system is far from delivering standardized AF management for older patients in rural China. There is an urgent need to empower the village doctors in optimising the care of AF patients.

8.
Plant Physiol Biochem ; 214: 108881, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968842

ABSTRACT

Seed germination is a critical phase for the life cycle and propagation of higher plants. This study explores the role of SlWRKY37, a WRKY transcription factor in tomato, in modulating seed germination. We discovered that SlWRKY37 expression is markedly downregulated during tomato seed germination. Through CRISPR/Cas9-mediated editing, we demonstrate that SlWRKY37 knockout enhances germination, while its overexpression results in a delay compared to the wild type. Transcriptome analysis revealed 679 up-regulated and 627 down-regulated genes in Slwrky37-CRISPR deletion mutants relative to the wild type. Gene ontology (GO) enrichment analysis indicated these differentially expressed genes are linked to seed dormancy, abscisic acid homeostasis, and protein phosphorylation pathways. Bioinformatics and biochemical assays identified SlABI5-like7 and SlLEA2 as key transcriptional targets of SlWRKY37, integral to tomato seed dormancy regulation. Additionally, SlWRKY37 was found to be post-translationally phosphorylated at Ser65, a modification crucial for its transcriptional activation. Our findings elucidate the regulatory role of SlWRKY37 in seed dormancy, suggesting its potential as a target for gene editing to reduce seed dormancy in tomato breeding programs.


Subject(s)
Gene Expression Regulation, Plant , Germination , Plant Proteins , Seeds , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Germination/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Dormancy/genetics
9.
Food Chem X ; 22: 101443, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38846797

ABSTRACT

Consumers rely on flavor characteristics to distinguish different types of Qingke Baijiu (QKBJ). Clarifying QKBJ's traits enhances its recognition and long-term growth. Thus, this study analyzed eight QKBJ samples from different regions of Tibet (Lhasa, Sannan, Shigatse, and Qamdo) using GC-MS, electronic nose and electronic tongue. The radar charts of the electronic tongue and electronic nose revealed highly similar profiles for all eight samples. Fifteen common compounds were found in all samples, with the main alcohol compounds being 3-Methyl-1-butanol, 1-hexanol, isobutanol, 1-butanol, 1-nonanol, and phenylethyl alcohol, imparting fruity, floral, and herbal aromas. However, the Sannan samples had higher total alcohol content than total ester content, emphasizing bitterness. Lhasa1 exhibited the most prominent sweetness, Lhasa2 the most noticeable sourness, and Qamdo the most pronounced umami. Lhasa3 and Lhasa4 had total acid content second only to total ester content. Tyd had the highest alkanes, while Lhasa had most aldehydes among samples.

10.
Food Chem ; 458: 140227, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943950

ABSTRACT

Some wheat-based foods require different doses of oil to moderate quality of dough during processing and the influence mechanisms remain unclear. Therefore, the effect of rapeseed oil addition on physicochemical characteristics and fine structure of dough and underlying mechanism were elucidated by rheometer, scanning microscope and molecular spectroscopic method. Results showed that compared with native dough (without exogenous rapeseed oil), the addition of rapeseed oil changed the fine structure, improved extensibility, but reduced viscoelasticity of the dough. Moreover, high addition especially 20 wt% oil (based on wheat flour) significantly changed gelatinization and retrogradation behaviors of the dough, whilst disrupted gluten network and increased random coil content (32.1%) of dough except that decreased its α-helix (21.2%), ß-sheet (23.1%), disulfide bond (7.9 µmol/g) compared with native dough which were 16.3%, 29.2%, 33.1%, 11.0 µmol/g, respectively. Results in the study could provide a certain understanding for application of vegetable oils in wheat-based products.

11.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890971

ABSTRACT

As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.

12.
Langmuir ; 40(26): 13688-13698, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38902198

ABSTRACT

The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites.

13.
Food Chem ; 457: 140131, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38917565

ABSTRACT

N-Succinyl amino acids (N-Suc-AAs) are garnering attention for their potential as taste-active compounds. The intricate variety of N-Suc-AAs presented considerable challenges in identifying those with taste-active properties. Consequently, we employed structure-based virtual screening to pinpoint taste-active N-Suc-AAs, revealing N-succinyl-L-tryptophan (ST) as a compound with high affinity for different taste receptors. Following this discovery, ST was synthesized through an enzymatic process, achieving a yield of 40.2%, with its structure verified via NMR spectroscopy. Sensory evaluation alongside electronic tongue assessments indicated that ST at a concentration of 1 mg/L significantly enhances umami, kokumi, and saltiness intensities, while concurrently mitigating bitterness from various bitter compounds, whilst itself remaining tasteless. Additionally, time-intensity (TI) results elucidated a marked augmentation in umami duration and a notable diminution in bitterness duration for solutions imbued with 1 mg/L ST. Molecular docking study suggested ST interacted with diverse taste receptors as an agonist or antagonist, primarily through hydrogen bonds and hydrophobic interactions. This study marked the inaugural report on the enzymatic synthesis of ST and its efficacy in improving taste characteristics, underscoring the importance of ST in improving sensory qualities of food products and fostering innovation within the seasoning industry.


Subject(s)
Molecular Docking Simulation , Taste , Tryptophan , Humans , Tryptophan/chemistry , Flavoring Agents/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Adult , Male , Taste Buds/chemistry , Female
14.
Food Chem ; 457: 140189, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38924910

ABSTRACT

In this study, a colourimetric biosensor based on bacteriophage SapYZUM13 and an aminated Mn3O4 (Mn3O4-NH2) nanozyme was constructed and evaluated for its ability to detect Staphylococcus aureus in food. The biosensor had a detection time of 20 min, with a detection limit of 2 × 101 CFU/mL and recovery rate of 92.42-106.96%, indicating its high reliability and accuracy in detecting the food pathogen. Mechanistically, SapYZUM13@Mn3O4-NH2 exhibited oxidase-mimicking capability, producing O2•- free radicals which oxidise 3,3',5,5'-tetramethylbenzidine (TMB) to yield blue-coloured oxTMB. In the presence of S. aureus, the oxidase activity decreased remarkably owing to shielding of the nanozyme active sites. Moreover, SapYZUM13@Mn3O4-NH2 could detect viable S. aureus from various sources, likely because of the special receptor-binding proteins of SapYZUM13 adsorbing to the wall teichoic acids on the S. aureus cell surface. Thus, SapYZUM13@Mn3O4-NH2 has broad application prospects for the detection of viable S. aureus in various foods.


Subject(s)
Biosensing Techniques , Colorimetry , Food Microbiology , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Colorimetry/methods , Food Contamination/analysis , Limit of Detection , Oxides/chemistry
15.
Toxicon ; 243: 107749, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710308

ABSTRACT

Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.


Subject(s)
Antifungal Agents , Aspergillus flavus , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/metabolism , Antifungal Agents/pharmacology , Lactobacillales/metabolism
16.
Sci Total Environ ; 937: 173377, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38796025

ABSTRACT

Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Conservation of Natural Resources/methods , Ecosystem
17.
JAMA Pediatr ; 178(6): 533-539, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38587852

ABSTRACT

Importance: Early onset of myopia increases the risk of high myopia, which can lead to irreversible retinal damage and even loss of central vision. Objective: To investigate the efficacy and safety of naked-eye 3-dimensional vision training (NVT) in preventing the progression of myopia in children. Design, Setting, and Participants: This randomized clinical trial was conducted in 3 hospitals from May 25, 2022, to February 24, 2023. Participants were children (aged 6-18 years) who had a diagnosis of myopia with a spherical equivalent refraction of -0.75 to -6.00 diopters (D). Intervention: Children in the intervention group received 20 minutes of NVT treatment every day, whereas children in the control group lived as usual without vision training. Main Outcome and Measure: The primary outcome was the change in axial length at 6 months. Spherical equivalent refraction (SER) was included as a secondary outcome. Results: Among 263 participants, 125 (47.5%) were male and 138 (52.5%) were female; the mean (SD) age was 10.3 (1.9) years (range, 6.1-15.6 years). A total of 227 patients (86.3%) completed the 6-month follow-up, including 102 in the intervention group and 125 in the control group. In the intervention group, the changes in axial length and SER at 6 months were 0.18 mm (95% CI, 0.16 to 0.20 mm) and -0.25 D (95% CI, -0.31 to -0.19 D), respectively. In the control group, the changes in axial length and SER at 6 months were 0.23 mm (95% CI, 0.21 to 0.25 mm) and -0.35 D (95% CI, -0.41 to -0.30 D), respectively. The differences in AL and SER between the 2 groups were significant (AL difference: -0.06 mm; 95% CI, -0.09 to -0.03; P < .001; SER difference: 0.10 D; 95% CI, 0.02 to 0.19; P = .02). No study-related adverse reactions were reported during follow-up. Conclusions and Relevance: NVT is a safe and promising means to control myopia progression in children with good adherence. Trial Registration: ClinicalTrials.gov Identifier: NCT05468775.


Subject(s)
Myopia , Refraction, Ocular , Humans , Child , Female , Male , Adolescent , Myopia/prevention & control , Myopia/therapy , Refraction, Ocular/physiology , Disease Progression , Treatment Outcome
18.
Food Chem ; 450: 139412, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38643646

ABSTRACT

Dodecenylsuccinic anhydride (DDSA) has been widely used to obtain amphiphilic starches. In this study, we investigated the functionalities of synchronous intermissive multi-ultrasound-assisted esterified starch. Compared to native starch (NS), it was deduced that multi-ultrasound-modified starch (US), esterified starch (ES), and multi-ultrasound-assisted esterified starch (UES) exhibited increased viscosities but reduced gelatinization temperatures and thermal stabilities. The viscoelastic moduli, retrogradation behaviors and hydrophobicity of the ES and UES species significantly altered. Moreover, the results of structural characterization suggested that esterification reduced the molecular weight and structural order of starch, whereas the intermissive ultrasonication treatment did not aggravate the structural disruption of ES. Additionally, compared with NS and US, the emulsification abilities of the ES and UES specimens were improved, leading to the desirable effect of stabilizing astaxanthin. Overall, this study provides a method for preparing amphiphilic starch, which can be exploited as a potential emulsifier and emulsion stabilizer for bioactive compounds.


Subject(s)
Emulsions , Hydrophobic and Hydrophilic Interactions , Starch , Starch/chemistry , Emulsions/chemistry , Esterification , Viscosity , Emulsifying Agents/chemistry , Molecular Weight
19.
J Biochem Mol Toxicol ; 38(4): e23710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605440

ABSTRACT

Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , MicroRNAs , Myocardial Reperfusion Injury , Pyroptosis , Animals , Rats , Adenine , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Demethylation , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism
20.
Int J Public Health ; 69: 1606299, 2024.
Article in English | MEDLINE | ID: mdl-38450278

ABSTRACT

Objectives: To analyze and describe the spatiotemporal trends of Low back pain (LBP) burdens from 1990 to 2019 and anticipate the following decade's incidence. Methods: Using data from the Global Burden of Disease (GBD) 2019 Study, we described net drifts, local drifts, age effects, and period cohort effects in incidence and forecasted incidence rates and cases by sex from 2020 to 2029 using the Nordpred R package. Results: LBP remained the leading cause of the musculoskeletal disease burden globally and across all socio-demographic index (SDI) regions. China is the top country. For recent periods, high-SDI countries faced unfavorable or worsening risks. The relative risk of incidence showed improving trends over time and in successively younger birth cohorts amongst low-middle-, middle- and high-middle-SDI countries. Additionally, the age-standardized incidence rates (ASIR) of LBP in both sexes globally showed a decreasing trend, but the incident cases would increase from 223 to 253 million overall in the next decade. Conclusion: As the population ages, incident cases will rise but ASIR will fall. To minimise LBP, public awareness and disease prevention and control are needed.


Subject(s)
Low Back Pain , Female , Humans , Male , China/epidemiology , Global Burden of Disease , Incidence , Low Back Pain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL