Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(1): 680-689, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36515396

ABSTRACT

Developing gene vectors with high transfection efficiency and low cytotoxicity to humans is crucial to improve gene therapy outcomes. This study set out to investigate the use of cationic polypeptide bilayer assemblies formed by coil-sheet poly(l-lysine)-block-poly(l-benzyl-cysteine) (PLL-b-PBLC) as gene vectors that present improved transfection efficiency, endosomal escape, and biocompatibility compared to PLL. The formation of the polyplexes was triggered by hydrogen bonding, hydrophobic interactions, and electrostatic association between the cationic PLL segments and the negatively charged plasmid encoding p53, resulting in self-assembled polypeptide chains. Transfection efficiency of these polyplexes increased with increments of PLL-to-PBLC block ratios, with PLL15-b-PBLC5 bilayers exhibiting the best in vitro transfection efficiency among all, suggesting that PLL-b-PBLC bilayer assemblies are efficient in the protection and stabilization of genes. The polypeptide bilayer gene vector reversed the cisplatin sensitivity of p53-null cancer cells by increasing apoptotic signaling. Consistent with in vitro results, mouse xenograft studies revealed that PLL15-b-PBLC5/plasmid encoding p53 therapy significantly suppressed tumor growth and enhanced low-dose cisplatin treatment, while extending survival of tumor-bearing mice and avoiding significant body weight loss. This study presents a feasible gene therapy that, combined with low-dose chemotherapeutic drugs, may treat genetically resistant cancers while reducing side effects in clinical patients.


Subject(s)
Cisplatin , Neoplasms , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Peptides/chemistry , Transfection , Genetic Therapy , Plasmids/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Polylysine/chemistry
2.
Int J Biol Macromol ; 159: 931-940, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32442567

ABSTRACT

Polypeptide-mediated silica mineralization is an attractive approach to prepare polypeptide/silica nanocomposites for enzyme immobilization. Herein, a facile approach for in situ immobilization of catalase (CAT) in polypeptide/silica nanocomposites is developed via the preparation of cross-linked polypeptide/enzyme microgels using an emulsion process followed by silica mineralization. The efficient protein immobilization under benign condition (25-28 °C, pH 7.0, 0.05 N) was evidenced by high immobilization yield (> 99%) and no protein leakage. Our data showed that the immobilized CAT exhibited prolonged reusability and storage stability compared to free one, suggesting that the composite networks not only provide suitable microenvironments to facilitate enzymatic reactions but also confine the enzyme macromolecules to prevent subunit dissociation. Star-shaped topology exhibited better coverage onto the enzyme than linear counterpart, leading to the superior reusability (relative activity >95% for 30 cycling number) and storage stability (relative activity >95% for 60 days) of the immobilized CAT (~ 14 mg/g of support). The substrate affinity and enzymatic reaction rate for the immobilized CAT were also influenced by silica content and polypeptide topology. This strategy may provide a feasible and inexpensive approach to fabricate polypeptide/silica nanocomposites, which would be promising materials in biotechnological fields such as enzyme immobilization.


Subject(s)
Biomineralization , Catalase/chemistry , Emulsions , Enzymes, Immobilized/chemistry , Nanocomposites/chemistry , Peptides/chemistry , Silicon Dioxide/chemistry , Chemistry Techniques, Synthetic , Enzyme Activation , Enzyme Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...