Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 93: 103087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244290

ABSTRACT

This paper proposes an innovative approach to generate a generalized myocardial ischemia database by modeling the virtual electrophysiology of the heart and the 12-lead electrocardiography projected by the in-silico model can serve as a ready-to-use database for automatic myocardial infarction/ischemia (MI) localization and classification. Although the virtual heart can be created by an established technique combining the cell model with personalized heart geometry to observe the spatial propagation of depolarization and repolarization waves, we developed a strategy based on the clinical pathophysiology of MI to generate a heterogeneous database with a generic heart while maintaining clinical relevance and reduced computational complexity. First, the virtual heart is simplified into 11 regions that match the types and locations, which can be diagnosed by 12-lead ECG; the major arteries were divided into 3-5 segments from the upstream to the downstream based on the general anatomy. Second, the stenosis or infarction of the major or minor coronary artery branches can cause different perfusion drops and infarct sizes. We simulated the ischemic sites in different branches of the arteries by meandering the infarction location to elaborate on possible ECG representations, which alters the infraction's size and changes the transmembrane potential (TMP) of the myocytes associated with different levels of perfusion drop. A total of 8190 different case combinations of cardiac potentials with ischemia and MI were simulated, and the corresponding ECGs were generated by forward calculations. Finally, we trained and validated our in-silico database with a sparse representation classification (SRC) and tested the transferability of the model on the real-world Physikalisch Technische Bundesanstalt (PTB) database. The overall accuracies for localizing the MI region on the PTB data achieved 0.86, which is only 2% drop compared to that derived from the simulated database (0.88). In summary, we have shown a proof-of-concept for transferring an in-silico model to real-world database to compensate for insufficient data.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Myocardial Perfusion Imaging , Humans , Myocardial Infarction/diagnostic imaging , Ischemia , Myocardial Ischemia/diagnostic imaging , Heart
2.
J Med Internet Res ; 25: e48044, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38100195

ABSTRACT

BACKGROUND: The sleep and circadian rhythm patterns associated with smartphone use, which are influenced by mental activities, might be closely linked to sleep quality and depressive symptoms, similar to the conventional actigraphy-based assessments of physical activity. OBJECTIVE: The primary objective of this study was to develop app-defined circadian rhythm and sleep indicators and compare them with actigraphy-derived measures. Additionally, we aimed to explore the clinical correlations of these indicators in individuals with insomnia and healthy controls. METHODS: The mobile app "Rhythm" was developed to record smartphone use time stamps and calculate circadian rhythms in 33 patients with insomnia and 33 age- and gender-matched healthy controls, totaling 2097 person-days. Simultaneously, we used standard actigraphy to quantify participants' sleep-wake cycles. Sleep indicators included sleep onset, wake time (WT), wake after sleep onset (WASO), and the number of awakenings (NAWK). Circadian rhythm metrics quantified the relative amplitude, interdaily stability, and intradaily variability based on either smartphone use or physical activity data. RESULTS: Comparisons between app-defined and actigraphy-defined sleep onsets, WTs, total sleep times, and NAWK did not reveal any significant differences (all P>.05). Both app-defined and actigraphy-defined sleep indicators successfully captured clinical features of insomnia, indicating prolonged WASO, increased NAWK, and delayed sleep onset and WT in patients with insomnia compared with healthy controls. The Pittsburgh Sleep Quality Index scores were positively correlated with WASO and NAWK, regardless of whether they were measured by the app or actigraphy. Depressive symptom scores were positively correlated with app-defined intradaily variability (ß=9.786, SD 3.756; P=.01) and negatively correlated with actigraphy-based relative amplitude (ß=-21.693, SD 8.214; P=.01), indicating disrupted circadian rhythmicity in individuals with depression. However, depressive symptom scores were negatively correlated with actigraphy-based intradaily variability (ß=-7.877, SD 3.110; P=.01) and not significantly correlated with app-defined relative amplitude (ß=-3.859, SD 12.352; P=.76). CONCLUSIONS: This study highlights the potential of smartphone-derived sleep and circadian rhythms as digital biomarkers, complementing standard actigraphy indicators. Although significant correlations with clinical manifestations of insomnia were observed, limitations in the evidence and the need for further research on predictive utility should be considered. Nonetheless, smartphone data hold promise for enhancing sleep monitoring and mental health assessments in digital health research.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Cross-Sectional Studies , Smartphone , Circadian Rhythm , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL