Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
J Exp Bot ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058302

ABSTRACT

The four carbon non-proteinogenic amino acid γ-aminobutyric acid (GABA) accumulates to high levels in plants in response to various abiotic and biotic stress stimuli, and plays a role in C:N balance, signaling and as a transport regulator. Expression in Xenopus oocytes and voltage-clamping allowed characterizing Arabidopsis GAT2 (At5g41800) as low affinity GABA transporter with a K0.5GABA~8 mM. L-alanine and butylamine represented additional substrates. GABA-induced currents were strongly dependent on the membrane potential, reaching highest affinity and highest transport rates at strongly negative membrane potentials. Mutation of Ser17, previously reported to be phosphorylated in planta, did not result in altered affinity. In short term stress experiment, AtGAT2 mRNA levels were upregulated at low water potential and under osmotic stress (polyethylene glycol, mannitol). Furthermore, AtGAT2 promoter activity was detected in vascular tissues, in maturating pollen, and the phloem unloading region of young seeds. Even though this suggested a role of AtGAT2 in long distance transport and loading of sink organs, under the conditions tested neither AtGAT2 overexpressing plants nor atgat2 or atgat1 T-DNA insertion lines, or atgat1 atgat2 double knockout mutants differed from wild type plants in growth on GABA, in amino acid levels or resistance to salt and osmotic stress.

2.
Chembiochem ; : e202400278, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953596

ABSTRACT

Bio-processes based on enzymatic catalysis play a major role in the development of green, sustainable processes, and the discovery of new enzymes is key to this approach. In this work, we analysed ten metagenomes and retrieved 48 genes coding for deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) using a sequence-based approach. These sequences were recombinantly expressed in Escherichia coli and screened for activity towards a range of aldol additions. Among these, one enzyme, DERA-61, proved to be particularly interesting and catalysed the aldol addition of furfural or benzaldehyde with acetone, butanone and cyclobutanone with unprecedented activity. The product of these reactions, aldols, can find applications as building blocks in the synthesis of biologically active compounds. Screening was carried out to identify optimized reaction conditions targeting temperature, pH, and salt concentrations. Lastly, the kinetics and the stereochemistry of the products were investigated, revealing that DERA-61 and other metagenomic DERAs have superior activity and stereoselectivity when they are provided with non-natural substrates, compared to well-known DERAs.

3.
Catal Sci Technol ; 14(9): 2390-2399, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38721397

ABSTRACT

Transaminase enzymes are well established biocatalysts that are used in chemical synthesis due to their beneficial sustainability profile, regio- and stereoselectivity and substrate specificity. Here, the use of a wild-type Chromobacterium violaceum transaminase (CvTAm) in enzyme cascades revealed the formation of a novel hydroxystyryl pyridine product. Subsequent studies established it was a transaminase mediated reaction where it was exhibiting apparent aldolase reactivity. This promiscuous enzyme reaction mechanism was then explored using other wild-type transaminases and via the formation of CvTAm mutants. Application of one pot multi-step enzyme cascades was subsequently developed to produce a range of hydroxystyryl pyridines.

4.
Plant Direct ; 8(4): e585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651017

ABSTRACT

Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 µM), mannose (92 µM), galactose (145 µM), fructose (224 µM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.

5.
Plant Physiol ; 195(3): 1775-1795, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38530638

ABSTRACT

In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pollen , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Dehydration , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics , Gene Expression Profiling
6.
RSC Adv ; 14(6): 4264-4273, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38298934

ABSTRACT

Biocatalytic approaches are used widely for the synthesis of amines from abundant or low cost starting materials. This is a fast-developing field where novel enzymes and enzyme combinations emerge quickly to enable the production of new and complex compounds. Natural multifunctional enzymes represent a part of multi-step biosynthetic pathways that ensure a one-way flux of reactants. In vivo, they confer a selective advantage via increased reaction rates and chemical stability or prevention of toxicity from reactive intermediates. Here we report the identification and analysis of a natural transaminase fusion, PP_2782, from Pseudomonas putida KT2440, as well as three of its thermophilic homologs from Thermaerobacter marianensis, Thermaerobacter subterraneus, and Thermincola ferriacetica. Both the fusions and their truncated transaminase-only derivatives showed good activity with unsubstituted aliphatic and aromatic aldehydes and amines, as well as with a range of α-keto acids, and l-alanine, l-glutamate, and l-glutamine. Through structural similarity, the fused domain was recognised as the acyl-[acyl-carrier-protein] reductase that affects reductive chain release. These natural transaminase fusions could have a great potential for industrial applications.

7.
RSC Adv ; 13(15): 9954-9962, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006375

ABSTRACT

Recent advances in the enzymatic degradation of poly(ethylene terphthalate) (PET) have led to a number of PET hydrolytic enzymes and mutants being developed. With the amount of PET building up in the natural world, there is a pressing need to develop scalable methods of breaking down the polymer into its monomers for recycling or other uses. Mechanoenzymatic reactions have gained traction recently as a green and efficient alternative to traditional biocatalytic reactions. For the first time we report increased yields of PET degradation by whole cell PETase enzymes by up to 27-fold by utilising ball milling cycles of reactive aging, when compared with typical solution-based reactions. This methodology leads to up to a 2600-fold decrease in the solvent required when compared with other leading degradation reactions in the field and a 30-fold decrease in comparison to reported industrial scale PET hydrolysis reactions.

8.
ChemCatChem ; 15(3): e202201126, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-37081856

ABSTRACT

Imine reductases (IREDs) are NADPH-dependent enzymes with significant biocatalytic potential for the synthesis of primary, secondary, and tertiary chiral amines. Their applications include the reduction of cyclic imines and the reductive amination of prochiral ketones. In this study, twenty-nine novel IREDs were revealed through genome mining. Imine reductase activities were screened at pH 7 and 9 and in presence of either NADPH or NADH; some IREDs showed good activities at both pHs and were able to accept both cofactors. IREDs with Asn and Glu at the key 187 residue showed preference for NADH. IREDs were also screened against a series of dihydroisoquinolines to synthesise tetrahydroisoquinolines (THIQs), bioactive alkaloids with a wide range of therapeutic properties. Selected IREDs showed high stereoselectivity, as well high THIQ yields (>90 %) when coupled to a glucose-6-phosphate dehydrogenase for NADPH cofactor recycling.

9.
Bioresour Bioprocess ; 10(1): 20, 2023.
Article in English | MEDLINE | ID: mdl-36936720

ABSTRACT

Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments. Supplementary Information: The online version contains supplementary material available at 10.1186/s40643-023-00626-7.

10.
RSC Chem Biol ; 4(2): 132-137, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36794017

ABSTRACT

Peptides play many key roles in biological systems and numerous methods have been developed to generate both natural and unnatural peptides. However, straightforward, reliable coupling methods that can be achieved under mild reactions conditions are still sought after. In this work, a new N-terminal tyrosine-containing peptide ligation method with aldehydes, utilising a Pictet-Spengler reaction is described. In a key step, tyrosinase enzymes have been used to convert l-tyrosine to l-3,4-dihydroxyphenyl alanine (l-DOPA) residues, generating suitable functionality for the Pictet-Spengler coupling. This new chemoenzymatic coupling strategy can be used for fluorescent-tagging and peptide ligation purposes.

11.
Green Chem ; 24(24): 9542-9551, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36544494

ABSTRACT

The rise and spread of antimicrobial resistance has necessitated the development of novel antimicrobials which are effective against drug resistant pathogens. Aminoglycoside antibiotics (AGAs) remain one of our most effective classes of bactericidal drugs. However, they are challenging molecules to selectively modify by chemical synthesis, requiring the use of extensive protection and deprotection steps leading to long, atom- and step-inefficient synthetic routes. Biocatalytic and chemoenzymatic approaches for the generation of AGA derivatives are of interest as they allow access to more concise and sustainable synthetic routes to novel compounds. This work presents a two-step chemoenzymatic route to regioselectively modify the C-6' position of AGAs. The approach uses a transaminase enzyme to generate an aldehyde on the C-6' position in the absence of protecting groups, followed by reductive amination to introduce substituents selectively on this position. Seven candidate transaminases were tested for their ability to deaminate a panel of commercially available AGAs. The C-6' transaminases could deaminate both pseudo di- and trisaccharide AGAs and tolerate the presence or absence of hydroxyl groups on the C-3'- and C-4'-positions. Additionally, sugar substituents on the C-6 hydroxyl were accepted but not on the C-5 hydroxyl. The most promising enzyme, GenB4, was then coupled with a reductive amination step to synthesise eleven novel 6'-gentamicin C1a analogues with conversions of 13-90%. Five of these compounds were active antimicrobials and four of these retained activity against an aminoglycoside-resistant Escherichia coli. This approach allows facile and step-efficient access to novel aminoglycoside compounds under mild reaction conditions and could potentially enable the development of greener, sustainable, and more cost-effective syntheses of novel AGAs.

12.
Microb Cell Fact ; 21(1): 229, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329510

ABSTRACT

BACKGROUND: The production of chemicals via bio-based routes is held back by limited easy-to-use stabilisation systems. A wide range of plasmid stabilisation mechanisms can be found in the literature, however, how these mechanisms effect genetic stability and how host strains still revert to non-productive variants is poorly understood at the single-cell level. This phenomenon can generate difficulties in production-scale bioreactors as different populations of productive and non-productive cells can arise. To understand how to prevent non-productive strains from arising, it is vital to understand strain behaviour at a single-cell level. The persistence of genes located on plasmid vectors is dependent on numerous factors but can be broadly separated into structural stability and segregational stability. While structural stability refers to the capability of a cell to resist genetic mutations that bring about a loss of gene function in a production pathway, segregational stability refers to the capability of a cell to correctly distribute plasmids into daughter cells to maintain copy number. A lack of segregational stability can rapidly generate plasmid-free variants during replication, which compromises productivity. RESULTS: Citramalate synthase expression was linked in an operon to the expression of a fluorescent reporter to enable rapid screening of the retention of a model chemical synthesis pathway in a continuous fermentation of E. coli. Cells without additional plasmid stabilisation started to lose productivity immediately after entering the continuous phase. Inclusion of a multimer resolution site, cer, enabled a steady-state production period of 58 h before a drop in productivity was detected. Single-cell fluorescence measurements showed that plasmid-free variants arose rapidly without cer stabilisation and that this was likely due to unequal distribution of plasmid into daughter cells during cell division. The addition of cer increased total chemical yield by more than 50%. CONCLUSIONS: This study shows the potential remains high for plasmids to be used as pathway vectors in industrial bio-based chemicals production, providing they are correctly stabilised. We demonstrate the need for accessible bacterial 'toolkits' to enable rapid production of known, stabilised bacterial production strains to enable continuous fermentation at scale for the chemicals industry.


Subject(s)
Escherichia coli , Glucose , Fermentation , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose/metabolism , Plasmids/genetics , Genetic Vectors
13.
Nat Commun ; 13(1): 5436, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114194

ABSTRACT

Benzylisoquinoline alkaloid derived pharmaceuticals are widely applied in modern medicines. Recent studies on the microbial production of benzylisoquinolines have highlighted key biological syntheses towards these natural products. Routes to non-natural benzylisoquinolines have been less explored, particularly halogenated compounds which are more challenging. Here, we show the use of a tyrosinase, tyrosine decarboxylase, transaminase, and norcoclaurine synthase which are combined in a parallel cascade design, in order to generate halogenated benzylisoquinoline alkaloids in high enantiomeric excess. Notably, mutagenesis studies are applied to generate tyrosinase mutants, which enhance the acceptance of halogenated tyrosines for use in the biocatalytic cascades developed.


Subject(s)
Alkaloids , Benzylisoquinolines , Biological Products , Monophenol Monooxygenase/genetics , Pharmaceutical Preparations , Transaminases , Tyrosine Decarboxylase
14.
Chembiochem ; 23(18): e202200212, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35691829

ABSTRACT

In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Methyltransferases/chemistry , S-Adenosylmethionine/chemistry
15.
Enzyme Microb Technol ; 160: 110071, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35717862

ABSTRACT

Large amounts of pectin-rich biomass are generated worldwide yearly, which can be hydrolysed by pectinases to obtain bio-based chemical building blocks such as D-galacturonic acid (GalA). The aim of this work was to investigate thermophilic pectinases and explore their synergistic application in the bioconversion of pectic substrates into GalA. Two exo-polygalacturonases (exo-PGs) from Thermotoga maritima (TMA01) and Bacillus licheniformis (BLI04) and two pectin methylesterases (PMEs) from Bacillus licheniformis (BLI09) and Streptomyces ambofaciens (SAM10) were cloned and expressed in Escherichia coli BL21 (DE3), purified and fully characterised. These pectinases exhibited optimum activity at temperatures above 50 °C and good stability at high temperature (40-90 °C) for up to 24 h. Exo-PGs preferred non-methylated substrates, suggesting that previous pectin demethylation by PMEs was necessary to achieve an efficient pectin monomerisation into GalA. Synergistic activity between PMEs and exo-PGs was tested using pectin from apple, citrus and sugar beet. GalA was obtained from apple and citrus pectin in a concentration of up to 2.5 mM after 4 h reaction at 50 °C, through the combined action of BLI09 PME with either TMA01 or BLI04 exo-PGs. Overall, this work contributes to expand the knowledge of pectinases from thermophiles and provides further insights into their application in the initial valorisation of sustainable pectin-rich biomass feedstocks.


Subject(s)
Bacillus licheniformis , Polygalacturonase , Bacillus licheniformis/genetics , Hexuronic Acids , Pectins/chemistry , Polygalacturonase/genetics
16.
Clin Imaging ; 86: 98-102, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35429830

ABSTRACT

PURPOSE: To evaluate the frequency and clinical outcome of unknown extracolonic findings in patients with cancer who underwent CT colonography (CTC). METHODS: Consecutive patients who underwent CTC from February 2000-April 2016 for any indication were retrospectively included. One radiologist blinded to clinical data determined C-RADS classification for all extracolonic findings on CTC reports as follows: E1: normal examination or anatomic variant, E2: clinically unimportant, E3: likely unimportant, incompletely characterized, and E4: potentially important. Another radiologist performed an unblinded review of medical records and determined if E4 findings were previously known or new, and classified new E4 findings as clinically important or unimportant on follow-up. RESULTS: Of 855 patients, 686/855 (80.2%) had a normal examination or clinically unimportant extracolonic findings (E1 and E2) and 169/855 (19.8%) had E3-E4 extracolonic findings [99/855 (11.6%) patients had known E4 findings and 102/855 (11.9%) patients had new E4 findings]. On follow-up, among new E4 findings, 71/855 (8.3%) patients had clinically important findings, 66/855 (7.7%) had a malignant outcome previously unknown by the referring physician, and 5/855 (0.6%) had other complications, including bowel obstruction and cirrhosis. Regarding new oncological findings, new extracolonic primary tumors were detected in 13/855 (1.5%) patients, corresponding to 12.7% (13/102) of the new E4 findings. The proportion of new E4 findings on CTC with and without intravenous contrast was not significantly different [41/320 (12.8%) vs 61/535 (11.4%), p = 0.612]. CONCLUSION: Among oncological patients, detection of new significant E4 extracolonic findings at CTC occurred in 8.3% of all cases, including unknown cancers in 1.5%.


Subject(s)
Colonography, Computed Tomographic , Colorectal Neoplasms , Neoplasms , Colorectal Neoplasms/diagnostic imaging , Hospitals , Humans , Incidental Findings , Retrospective Studies
18.
Nat Commun ; 13(1): 507, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082282

ABSTRACT

Green fluorescent protein (GFP), the most widely used fluorescent protein for in vivo monitoring of biological processes, is known to undergo photooxidation reactions. However, the most fundamental property underpinning photooxidation, the electron detachment energy, has only been measured for the deprotonated GFP chromophore in the gas phase. Here, we use multiphoton ultraviolet photoelectron spectroscopy in a liquid-microjet and high-level quantum chemistry calculations to determine the electron detachment energy of the GFP chromophore in aqueous solution. The aqueous environment is found to raise the detachment energy by around 4 eV compared to the gas phase, similar to calculations of the chromophore in its native protein environment. In most cases, electron detachment is found to occur resonantly through electronically excited states of the chromophore, highlighting their importance in photo-induced electron transfer processes in the condensed phase. Our results suggest that the photooxidation properties of the GFP chromophore in an aqueous environment will be similar to those in the protein.


Subject(s)
Green Fluorescent Proteins , Photoelectron Spectroscopy/methods , Electron Transport , Electronics , Electrons , Models, Molecular , Photobiology/methods , Quantum Theory
19.
Plant Physiol ; 188(2): 941-954, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34850211

ABSTRACT

Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.


Subject(s)
Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Roots/genetics , Plant Roots/microbiology , Protein Processing, Post-Translational , Rhizobium/genetics , Symbiosis/genetics , Gene Expression Regulation, Plant , Genes, Plant , Mycorrhizae/genetics , Mycorrhizae/physiology , Rhizobium/physiology
20.
Microb Biotechnol ; 15(1): 305-317, 2022 01.
Article in English | MEDLINE | ID: mdl-34713952

ABSTRACT

Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I-II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d-sorbitol. Kinetic and end-point colorimetric assays with different amino donors-acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non-stereoselective serine-TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non-stereoselective serine-TAs, whilst two stereoselective serine-TAs showed significantly higher yields. Coupling serine-TA reactions to a transketolase to yield l-erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine-TAs and transketolase using the inexpensive racemic D/L-serine led to high Ery yield (82%). Thermal characterization of stereoselective serine-TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.


Subject(s)
Escherichia coli , Transaminases , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Transaminases/genetics , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL