Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biopolymers ; 108(2)2017 Mar.
Article in English | MEDLINE | ID: mdl-27539157

ABSTRACT

We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T1/2 ) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives.


Subject(s)
Click Chemistry/methods , Peptide Library , Peptides/chemistry , Vascular Endothelial Growth Factor A/chemistry , Amino Acid Sequence , Animals , Antibodies/administration & dosage , Antibodies/chemistry , Antibodies/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Calorimetry, Differential Scanning , Catalysis , Chromatography, High Pressure Liquid , Circular Dichroism , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Female , HT29 Cells , Humans , Injections, Intraperitoneal , Injections, Intravenous , Ligands , Male , Mass Spectrometry , Mice , Microsomes, Liver/metabolism , Peptides/metabolism , Peptides/pharmacokinetics , Protein Binding , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/metabolism
2.
Anal Biochem ; 447: 64-73, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24184358

ABSTRACT

We constructed a genetic fusion of a single domain antibody (sdAb) with the thermal stable maltose binding protein from the thermophile Pyrococcus furiosus (PfuMBP). Produced in the Escherichia coli cytoplasm with high yield, it proved to be a rugged and effective immunoreagent. The sdAb-A5 binds BclA, a Bacillus anthracis spore protein, with high affinity (K(D) ∼ 50 pM). MBPs, including the thermostable PfuMBP, have been demonstrated to be excellent folding chaperones, improving production of many recombinant proteins. A three-step purification of E. coli shake flask cultures of PfuMBP-sdAb gave a yield of approximately 100mg/L highly purified product. The PfuMBP remained stable up to 120 °C, whereas the sdAb-A5 portion unfolded at approximately 68 to 70 °C but could refold to regain activity. This fusion construct was stable to heating at 1mg/ml for 1h at 70 °C, retaining nearly 100% of its binding activity; nearly one-quarter (24%) activity remained after 1h at 90 °C. The PfuMBP-sdAb construct also provides a stable and effective method to coat gold nanoparticles. Most important, the construct was found to provide enhanced detection of B. anthracis Sterne strain (34F2) spores relative to the sdAb-A5 both as a capture reagent and as a detection reagent.


Subject(s)
Archaeal Proteins/genetics , Immunoassay/methods , Maltose-Binding Proteins/genetics , Membrane Glycoproteins/analysis , Recombinant Fusion Proteins/chemistry , Single-Domain Antibodies/chemistry , Temperature , Cytoplasm/genetics , Microspheres , Protein Stability , Pyrococcus furiosus/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Spores, Bacterial , Transition Temperature
3.
Chem Biol ; 19(4): 449-55, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22520751

ABSTRACT

Mutation of surface residues to charged amino acids increases resistance to aggregation and can enable reversible unfolding. We have developed a protocol using the Rosetta computational design package that "supercharges" proteins while considering the energetic implications of each mutation. Using a homology model, a single-chain variable fragment antibody was designed that has a markedly enhanced resistance to thermal inactivation and displays an unanticipated ≈30-fold improvement in affinity. Such supercharged antibodies should prove useful for assays in resource-limited settings and for developing reagents with improved shelf lives.


Subject(s)
Single-Chain Antibodies/chemistry , Hydrogen Bonding , Protein Engineering , Protein Folding , Protein Structure, Tertiary , Single-Chain Antibodies/metabolism , Software , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL