Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
medRxiv ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38712121

Introduction: Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods: Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results: Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions: Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.

2.
Nat Commun ; 15(1): 881, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38286811

Excessive host immune responses contribute to severe malaria with high mortality. Here, we show that PRL2 in innate immune cells is highly related to experimental malaria disease progression, especially the development of murine severe malaria. In the absence of PRL2 in myeloid cells, Plasmodium berghei infection results in augmented lung injury, leading to significantly increased mortality. Intravital imaging revealed greater neutrophilic inflammation and NET formation in the lungs of PRL2 myeloid conditional knockout mice. Depletion of neutrophils prior to the onset of severe disease protected mice from NETs associated lung injury, and eliminated the difference between WT and PRL2 CKO mice. PRL2 regulates neutrophil activation and NET accumulation via the Rac-ROS pathway, thus contributing to NETs associated ALI. Hydroxychloroquine, an inhibitor of PRL2 degradation alleviates NETs associated tissue damage in vivo. Our findings suggest that PRL2 serves as an indicator of progression to severe malaria and ALI. In addition, our study indicated the importance of PRL2 in NET formation and tissue injury. It might open a promising path for adjunctive treatment of NET-associated disease.


Acute Lung Injury , Extracellular Traps , Immediate-Early Proteins , Malaria , Protein Tyrosine Phosphatases , Animals , Mice , Acute Lung Injury/metabolism , Extracellular Traps/metabolism , Lung/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neutrophils , Protein Tyrosine Phosphatases/metabolism , Immediate-Early Proteins/metabolism
3.
Trends Parasitol ; 40(1): 28-44, 2024 01.
Article En | MEDLINE | ID: mdl-38065791

Cerebral malaria (CM) is a severe neurological complication caused by Plasmodium falciparum parasites; it is characterized by the sequestration of infected red blood cells within the cerebral microvasculature. New findings, combined with a better understanding of the central nervous system (CNS) barriers, have provided greater insight into the players and events involved in CM, including site-specific T cell responses in the human brain. Here, we review the updated roles of innate and adaptive immune responses in CM, with a focus on the role of the perivascular macrophage-endothelium unit in antigen presentation, in the vascular and perivascular compartments. We suggest that these events may be pivotal in the development of CM.


Malaria, Cerebral , Humans , Brain , Plasmodium falciparum/physiology , Host-Parasite Interactions , Erythrocytes/parasitology
4.
Clin Infect Dis ; 78(2): 457-460, 2024 02 17.
Article En | MEDLINE | ID: mdl-37897407

Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show magnetic resonance imaging (MRI) features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in 2 adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment.


Brain Edema , Malaria, Cerebral , Adult , Humans , Malaria, Cerebral/diagnostic imaging , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Brain Edema/etiology , Brain Edema/pathology
6.
Front Cell Infect Microbiol ; 13: 1090013, 2023.
Article En | MEDLINE | ID: mdl-36844403

Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.


Brain Diseases , Malaria, Cerebral , Malaria, Falciparum , Humans , Malaria, Cerebral/diagnosis , Plasmodium falciparum , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Microvessels
7.
Trends Parasitol ; 39(3): 191-199, 2023 03.
Article En | MEDLINE | ID: mdl-36737313

Severe falciparum malaria is a medical emergency and a leading cause of death and neurodisability in endemic areas. Common complications include acute kidney injury (AKI) and cerebral malaria, and recent studies have suggested links between kidney and brain dysfunction in Plasmodium falciparum infection. Here, we review these new findings and present the hypothesis of a pivotal pathogenic crosstalk between the kidneys and the brain in severe falciparum malaria. We highlight the evidence of a role for distant organ involvement in the development of cerebral malaria and subsequent neurocognitive impairment post-recovery, describe the challenges associated with current diagnostic shortcomings for both AKI and brain involvement in severe falciparum malaria, and explore novel potential therapeutic strategies.


Acute Kidney Injury , Malaria, Cerebral , Malaria, Falciparum , Humans , Malaria, Cerebral/complications , Malaria, Falciparum/drug therapy , Kidney/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/pathology , Brain , Plasmodium falciparum
8.
Am J Trop Med Hyg ; 107(4_Suppl): 97-106, 2022 10 11.
Article En | MEDLINE | ID: mdl-36228919

The Center for the Study of Complex Malaria in India (CSCMi) is one of 10 International Centers of Excellence in Malaria Research funded by the National Institutes of Health since 2010. The Center combines innovative research with capacity building and technology transfer to undertake studies with clinical and translational impact that will move malaria control in India toward the ultimate goal of malaria elimination/eradication. A key element of each research site in the four states of India (Tamil Nadu, Gujarat, Odisha, and Meghalaya) has been undertaking community- and clinic-based epidemiology projects to characterize the burden of malaria in the region. Demographic and clinical data and samples collected during these studies have been used in downstream projects on, for example, the widespread use of mosquito repellants, the population genomics of Plasmodium vivax, and the serological responses to P. vivax and Plasmodium falciparum antigens that reflect past or present exposure. A focus has been studying the pathogenesis of severe malaria caused by P. falciparum through magnetic resonance imaging of cerebral malaria patients. Here we provide a snapshot of some of the basic and applied research the CSCMi has undertaken over the past 12 years and indicate the further research and/or clinical and translational impact these studies have had.


Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Humans , India/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Vivax/epidemiology , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Translational Research, Biomedical
9.
Am J Trop Med Hyg ; 107(4_Suppl): 90-96, 2022 10 11.
Article En | MEDLINE | ID: mdl-36228922

The Center for the Study of Complex Malaria in India (CSCMi) was launched in 2010 with the overall goal of addressing major gaps in our understanding of "complex malaria" in India through projects on the epidemiology, transmission, and pathogenesis of the disease. The Center was mandated to adopt an integrated approach to malaria research, including building capacity, developing infrastructure, and nurturing future malaria leaders while conducting relevant and impactful studies to assist India as it moves from control to elimination. Here, we will outline some of the interactions and impacts the Center has had with malaria policy and control counterparts in India, as well as describe emerging needs and new research questions that have become apparent over the past 12 years.


Malaria , Humans , India/epidemiology , Malaria/epidemiology , Malaria/prevention & control
10.
Pathogens ; 11(8)2022 Jul 28.
Article En | MEDLINE | ID: mdl-36014972

Secondary lymphoid tissues play a major role in the human immune response to P. falciparum infection. Previous studies have shown that acute falciparum malaria is associated with marked perturbations of the cellular immune system characterized by lowered frequency and absolute number of circulating T cell subsets. A temporary relocation of T cells, possibly by infiltration to secondary lymphoid tissue, or their permanent loss through apoptosis, are two proposed explanations for this observation. We conducted the present study to determine the phenotype of lymphocyte subsets that accumulate in the lymph node and spleen during acute stages of falciparum malaria infection in Malawian children, and to test the hypothesis that lymphocytes are relocated to lymphoid tissues during acute infection. We stained tissue sections from children who had died of the two common clinical forms of severe malaria in Malawi, namely severe malarial anemia (SMA, n = 1) and cerebral malaria (CM, n = 3), and used tissue sections from pediatric patients who had died of non-malaria sepsis (n = 2) as controls. Both lymph node and spleen tissue (red pulp) sections from CM patients had higher percentages of T cells (CD4+ and CD8+) compared to the SMA patient. In the latter, we observed a higher percentage of CD20+ B cells in the lymph nodes compared to CM patients, whereas the opposite was observed in the spleen. Both lymph node and spleen sections from CM patients had increased percentages of CD69+ and CD45RO+ cells compared to tissue sections from the SMA patient. These results support the hypothesis that the relocation of lymphocytes to spleen and lymph node may contribute to the pan-lymphopenia observed in acute CM.

11.
Life Sci Alliance ; 5(6)2022 06.
Article En | MEDLINE | ID: mdl-35260473

Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as brain swelling at the acute stage is difficult to study in humans and animal models with reliable induction of reversible edema are not known. In this study, we show that reversible brain swelling in experimental murine CM can be induced reliably after single vaccination with radiation-attenuated sporozoites as proven by in vivo high-field magnetic resonance imaging. Our results provide evidence that brain swelling results from transcellular blood-brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In adult CM patients magnetic resonance imaging demonstrate microhemorrhages in more than one third of patients with reversible edema, emphasizing similarities of the experimental model and human disease. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach to reduce edema and may improve neurological outcome.


Brain Edema , Malaria, Cerebral , Animals , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Brain Edema/diagnostic imaging , Brain Edema/etiology , Brain Edema/pathology , Edema/pathology , Humans , Malaria, Cerebral/pathology , Mice
12.
Clin Infect Dis ; 75(1): 11-18, 2022 08 24.
Article En | MEDLINE | ID: mdl-34905777

BACKGROUND: Cerebral malaria in adults is associated with brain hypoxic changes on magnetic resonance (MR) images and has a high fatality rate. Findings of neuroimaging studies suggest that brain involvement also occurs in patients with uncomplicated malaria (UM) or severe noncerebral malaria (SNCM) without coma, but such features were never rigorously characterized. METHODS: Twenty patients with UM and 21 with SNCM underwent MR imaging on admission and 44-72 hours later, as well as plasma analysis. Apparent diffusion coefficient (ADC) maps were generated, with values from 5 healthy individuals serving as controls. RESULTS: Patients with SNCM had a wide spectrum of cerebral ADC values, including both decreased and increased values compared with controls. Patients with low ADC values, indicating cytotoxic edema, showed hypoxic patterns similar to cerebral malaria despite the absence of deep coma. Conversely, high ADC values, indicative of mild vasogenic edema, were observed in both patients with SNCM and patients with UM. Brain involvement was confirmed by elevated circulating levels of S100B. Creatinine was negatively correlated with ADC in SNCM, suggesting an association between acute kidney injury and cytotoxic brain changes. CONCLUSIONS: Brain involvement is common in adults with SNCM and a subgroup of hospitalized patients with UM, which warrants closer neurological follow-up. Increased creatinine in SNCM may render the brain more susceptible to cytotoxic edema.


Brain Edema , Malaria, Cerebral , Malaria, Falciparum , Adult , Brain/diagnostic imaging , Brain/pathology , Brain Edema/diagnostic imaging , Brain Edema/etiology , Brain Edema/pathology , Coma/complications , Creatinine , Humans , Malaria, Cerebral/complications , Malaria, Falciparum/complications
13.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article En | MEDLINE | ID: mdl-34819379

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Erythrocytes/parasitology , Merozoites/physiology , Plasmodium falciparum/genetics , Plasmodium/metabolism , Protozoan Proteins/metabolism , Sporozoites/physiology , Actin Cytoskeleton/metabolism , Actomyosin/chemistry , Animals , Erythrocytes/cytology , Human Umbilical Vein Endothelial Cells , Humans , Inhibitory Concentration 50 , Locomotion , Membrane Proteins/metabolism , Signal Transduction
15.
JCI Insight ; 6(18)2021 09 22.
Article En | MEDLINE | ID: mdl-34549725

Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A-EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A-EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.


Antigens, Protozoan/blood , Brain Edema/blood , Malaria, Cerebral/complications , Parasite Load , Protozoan Proteins/blood , Protozoan Proteins/genetics , Thrombocytopenia/blood , Adolescent , Adult , Age Factors , Aged , Biomarkers/blood , Brain Edema/classification , Brain Edema/diagnostic imaging , Brain Edema/parasitology , Child , Child, Preschool , Endothelial Protein C Receptor/metabolism , Humans , India , Machine Learning , Magnetic Resonance Imaging , Malawi , Middle Aged , Patient Acuity , Protozoan Proteins/metabolism , Thrombocytopenia/parasitology , Transcription, Genetic , Young Adult
17.
J Exp Med ; 218(3)2021 03 01.
Article En | MEDLINE | ID: mdl-33492344

Cerebral malaria (CM) is caused by the binding of Plasmodium falciparum-infected erythrocytes (IEs) to the brain microvasculature, leading to inflammation, vessel occlusion, and cerebral swelling. We have previously linked dual intercellular adhesion molecule-1 (ICAM-1)- and endothelial protein C receptor (EPCR)-binding P. falciparum parasites to these symptoms, but the mechanism driving the pathogenesis has not been identified. Here, we used a 3D spheroid model of the blood-brain barrier (BBB) to determine unexpected new features of IEs expressing the dual-receptor binding PfEMP1 parasite proteins. Analysis of multiple parasite lines shows that IEs are taken up by brain endothelial cells in an ICAM-1-dependent manner, resulting in breakdown of the BBB and swelling of the endothelial cells. Via ex vivo analysis of postmortem tissue samples from CM patients, we confirmed the presence of parasites within brain endothelial cells. Importantly, this discovery points to parasite ingress into the brain endothelium as a contributing factor to the pathology of human CM.


Blood-Brain Barrier/pathology , Malaria, Cerebral/pathology , Malaria, Cerebral/parasitology , Protozoan Proteins/genetics , Adult , Animals , Endocytosis , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Endothelial Protein C Receptor/metabolism , Erythrocytes/parasitology , Erythrocytes/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Microvilli/metabolism , Models, Biological , Molecular Docking Simulation , Parasites/metabolism , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/ultrastructure , Protein Binding , Protein Isoforms/metabolism , Rats , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
18.
Clin Infect Dis ; 73(7): e2387-e2396, 2021 10 05.
Article En | MEDLINE | ID: mdl-33321516

BACKGROUND: Cerebral malaria is a common presentation of severe Plasmodium falciparum infection and remains an important cause of death in the tropics. Key aspects of its pathogenesis are still incompletely understood, but severe brain swelling identified by magnetic resonance imaging (MRI) was associated with a fatal outcome in African children. In contrast, neuroimaging investigations failed to identify cerebral features associated with fatality in Asian adults. METHODS: Quantitative MRI with brain volume assessment and apparent diffusion coefficient (ADC) histogram analyses were performed for the first time in 65 patients with cerebral malaria to compare disease signatures between children and adults from the same cohort, as well as between fatal and nonfatal cases. RESULTS: We found an age-dependent decrease in brain swelling during acute cerebral malaria, and brain volumes did not differ between fatal and nonfatal cases across both age groups. In nonfatal disease, reversible, hypoxia-induced cytotoxic edema occurred predominantly in the white matter in children, and in the basal ganglia in adults. In fatal cases, quantitative ADC histogram analyses also demonstrated different end-stage patterns between adults and children: Severe hypoxia, evidenced by global ADC decrease and elevated plasma levels of lipocalin-2 and microRNA-150, was associated with a fatal outcome in adults. In fatal pediatric disease, our results corroborate an increase in brain volume, leading to augmented cerebral pressure, brainstem herniation, and death. CONCLUSIONS: Our findings suggest distinct pathogenic patterns in pediatric and adult cerebral malaria with a stronger cytotoxic component in adults, supporting the development of age-specific adjunct therapies.


Brain Diseases , Malaria, Cerebral , Malaria, Falciparum , Adult , Brain/diagnostic imaging , Brain Diseases/diagnostic imaging , Brain Diseases/parasitology , Child , Humans , Lipocalin-2/blood , Magnetic Resonance Imaging , Malaria, Cerebral/diagnostic imaging , Malaria, Falciparum/diagnostic imaging , MicroRNAs/blood
19.
Front Cell Infect Microbiol ; 11: 793954, 2021.
Article En | MEDLINE | ID: mdl-34976869

Despite encouraging progress over the past decade, malaria remains a major global health challenge. Its severe form accounts for the majority of malaria-related deaths, and early diagnosis is key for a positive outcome. However, this is hindered by the non-specific symptoms caused by malaria, which often overlap with those of other viral, bacterial and parasitic infections. In addition, current tools are unable to detect the nature and degree of vital organ dysfunction associated with severe malaria, as complications develop silently until the effective treatment window is closed. It is therefore crucial to identify cheap and reliable early biomarkers of this wide-spectrum disease. microRNAs (miRNAs), a class of small non-coding RNAs, are rapidly released into the blood circulation upon physiological changes, including infection and organ damage. The present review details our current knowledge of miRNAs as biomarkers of specific organ dysfunction in patients with malaria, and both promising candidates identified by pre-clinical models and important knowledge gaps are highlighted for future evaluation in humans. miRNAs associated with infected vectors are also described, with a view to expandind this rapidly growing field of research to malaria transmission and surveillance.


Malaria , MicroRNAs , Biomarkers , Humans , Malaria/diagnosis , MicroRNAs/genetics
20.
Mol Biol Rep ; 47(11): 8841-8848, 2020 Nov.
Article En | MEDLINE | ID: mdl-33113080

Severe malaria (SM) caused by Plasmodium falciparum (Pf) infection has been associated with life-threatening anemia, metabolic acidosis, cerebral malaria and multiorgan dysfunction. It may lead to death if not treated promptly. RNASE 3 has been linked to Pf growth inhibition and its polymorphisms found associated with SM and cerebral malaria in African populations. This study aimed to assess the association of RNASE 3 polymorphisms with SM in an Indian population. RNASE 3 gene and flanking regions were amplified followed by direct DNA sequencing in 151 Indian patients who visited Wenlock District Government Hospital, Mangalore, Karnataka, India. Allele, genotype and haplotype frequencies were compared between patients with SM (n = 47) and uncomplicated malaria (UM; n = 104). Homozygous mutant genotype was only found for rs2233860 (+ 499G > C) polymorphism (< 1% frequency). No significant genetic associations were found for RNASE 3 polymorphism genotypes and alleles in Indian SM patients using the Fisher's exact test. C-G-G haplotype of rs2233859 (- 38C > A), rs2073342 (+ 371C > G) and rs2233860 (+ 499G > C) polymorphisms was correlated significantly with SM patients (OR = 3.03; p = 0.008) after Bonferroni correction. A haplotype of RNASE 3 gene was found associated with an increased risk of SM and confirming that RNASE 3 gene plays a role in susceptibility to SM.


Eosinophil Cationic Protein/genetics , Genetic Predisposition to Disease/genetics , Haplotypes , Malaria, Falciparum/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Alleles , Child , Eosinophil Cationic Protein/metabolism , Female , Gene Frequency , Genotype , Humans , India , Male , Middle Aged , Odds Ratio , Severity of Illness Index , Young Adult
...