Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Virus Res ; 340: 199301, 2024 02.
Article in English | MEDLINE | ID: mdl-38096954

ABSTRACT

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Subject(s)
Bunyaviridae , Interferon Type I , Receptor, Interferon alpha-beta , Animals , Mice , Receptor, Interferon alpha-beta/genetics , Mice, Knockout , Interferons , Liver , Interleukin-12
2.
PLoS Negl Trop Dis ; 17(12): e0011851, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100536

ABSTRACT

Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.


Subject(s)
Henipavirus Infections , Nipah Virus , Viral Vaccines , Animals , Cricetinae , Humans , Vaccinia virus/genetics , Nipah Virus/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Viral Vaccines/genetics , Vaccines, Synthetic/genetics , Henipavirus Infections/prevention & control
3.
Virology ; 587: 109856, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541184

ABSTRACT

Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses that can cause fatal encephalitis in humans. Many animal models have been used to study henipavirus pathogenesis. In the mouse, HeV infection has previously shown that intranasal challenge can lead to neurological infection, however mice similarly challenged with NiV show no evidence of virus infecting the brain. We generated recombinant HeV (rHeV) and NiV (rNiV) where selected proteins were switched to examine their role in neuroinvasion in the mouse. These viruses displayed similar growth kinetics when compared to wildtype in vitro. In the mouse, infection outcomes with recombinant virus did not differ to infection outcomes of wildtype viruses. Virus was detected in the brain of 5/30 rHeV-challenged mice, but not rNiV-challenged mice. To confirm the permissiveness of mouse neurons to these viruses, primary mouse neurons were successfully infected in vitro, suggesting that other pathobiological factors contribute to the differences in disease outcomes in mice.

4.
J Virol ; 97(5): e0034023, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37166307

ABSTRACT

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Subject(s)
Measles , Neurodegenerative Diseases , Subacute Sclerosing Panencephalitis , Cricetinae , Humans , Mice , Animals , Measles virus/physiology , Subacute Sclerosing Panencephalitis/genetics , Hemagglutinins/metabolism , Neurodegenerative Diseases/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Recombinant Proteins/metabolism , Neurons , Cell Adhesion Molecule-1/metabolism
5.
Front Microbiol ; 14: 1333946, 2023.
Article in English | MEDLINE | ID: mdl-38249467

ABSTRACT

Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods: Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results: In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion: These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.

6.
Viruses ; 13(12)2021 12 19.
Article in English | MEDLINE | ID: mdl-34960816

ABSTRACT

Jingmen tick virus (JMTV) and the related jingmenvirus-termed Alongshan virus are recognized as globally emerging human pathogenic tick-borne viruses. These viruses have been detected in various mammals and invertebrates, although their natural transmission cycles remain unknown. JMTV and a novel jingmenvirus, tentatively named Takachi virus (TAKV), have now been identified during a surveillance of tick-borne viruses in Japan. JMTV was shown to be distributed across extensive areas of Japan and has been detected repeatedly at the same collection sites over several years, suggesting viral circulation in natural transmission cycles in these areas. Interestingly, these jingmenviruses may exist in a host tick species-specific manner. Vertical transmission of the virus in host ticks in nature was also indicated by the presence of JMTV in unfed host-questing Amblyomma testudinarium larvae. Further epidemiological surveillance and etiological studies are necessary to assess the status and risk of jingmenvirus infection in Japan.


Subject(s)
Arboviruses/isolation & purification , Ticks/virology , Animals , Arboviruses/classification , Arboviruses/genetics , Host Specificity , Infectious Disease Transmission, Vertical , Larva/virology , Phylogeny
7.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Article in English | MEDLINE | ID: mdl-33534867

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Subject(s)
Antigens, Viral/immunology , Nucleoproteins/immunology , Phlebovirus/immunology , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Vaccines, Attenuated/administration & dosage , Vaccines, Synthetic/administration & dosage , Viral Envelope Proteins/immunology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/virology
8.
Virol J ; 17(1): 151, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33036623

ABSTRACT

BACKGROUND: Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe encephalitis and respiratory disease with a high mortality rate in humans. During large outbreaks of the viral disease, serological testing of serum samples could be a useful diagnostic tool, which could provide information on not only the diagnosis of NiV disease but also the history of an individual with previous exposure to the virus, thereby supporting disease control. Therefore, an efficient method for the inactivation of NiV in serum samples is required for serological diagnosis. METHODS: We determined the optimal conditions for the inactivation of NiV infectivity in human serum using heating and UV treatment. The inactivation method comprised UV irradiation with a cover of aluminum foil for 30 min and heating at 56 °C for 30 min. RESULTS: With an optimized protocol for virus inactivation, NiV infectivity in serum samples (containing 6.0 × 105 TCID50) was completely inactivated. CONCLUSIONS: We developed a recommended protocol for the effective inactivation of NiV. This protocol would enable a regional or local laboratory to safely transport or process samples, including NiV, for serological testing in its biosafety level-2 facility.


Subject(s)
Hot Temperature , Microbial Viability/radiation effects , Nipah Virus/radiation effects , Ultraviolet Rays , Virology/methods , Virus Inactivation/radiation effects , Animals , Chlorocebus aethiops , Henipavirus Infections/blood , Henipavirus Infections/virology , Humans , Nipah Virus/physiology , Research , Vero Cells
9.
Acta Histochem ; 122(3): 151515, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32081447

ABSTRACT

Most mammalian species have a vomeronasal organ that detects specific chemical substances, such as pheromones. Mucous fluid covering the vomeronasal sensory epithelium is secreted by vomeronasal glands, and the properties of these fluids have been suggested to be involved in chemical detection. Histological studies using periodic acid-Schiff (PAS) and Alcian blue pH 2.5 (AB) stains, which respectively detect natural and acidic polysaccharides, have suggested variations in the nature of the vomeronasal glands among species. Here, we investigated the responsivity of the vomeronasal glands to PAS and AB stains in eight Laurasiatheria species. All species studied herein possessed vomeronasal glands that stained positive for PAS, like other many reported species. The vomeronasal glands of dogs and minks - like rodents, were AB-negative, whereas those of cows, goats, sika deer, musk shrews and two bat species were positive. Considering the present findings and previous reports, the vomeronasal glands in most of Laurasiatheria species appear to be fundamentally abundant in acidic polysaccharides, whereas those in carnivores essentially contains neutral polysaccharides.


Subject(s)
Mammals/metabolism , Polysaccharides/metabolism , Vomeronasal Organ/metabolism , Alcian Blue , Animals , Cattle , Chiroptera , Deer , Dogs , Mice, Inbred ICR , Mink , Olfactory Bulb , Periodic Acid-Schiff Reaction , Polysaccharides/chemistry , Shrews
10.
Sci Rep ; 9(1): 11990, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427690

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by the SFTS phlebovirus (SFTSV). SFTS patients were first reported in China, followed by Japan and South Korea. In 2017, cats were diagnosed with SFTS for the first time, suggesting that these animals are susceptible to SFTSV. To confirm whether or not cats were indeed susceptible to SFTSV, animal subjects were experimentally infected with SFTSV. Four of the six cats infected with the SPL010 strain of SFTSV died, all showing similar or more severe symptoms than human SFTS patients, such as a fever, leukocytopenia, thrombocytopenia, weight loss, anorexia, jaundice and depression. High levels of SFTSV RNA loads were detected in the serum, eye swab, saliva, rectal swab and urine, indicating a risk of direct human infection from SFTS-infected animals. Histopathologically, acute necrotizing lymphadenitis and hemophagocytosis were prominent in the lymph nodes and spleen. Severe hemorrhaging was observed throughout the gastrointestinal tract. B cell lineage cells with MUM-1 and CD20, but not Pax-5 in the lesions were predominantly infected with SFTSV. The present study demonstrated that cats were highly susceptible to SFTSV. The risk of direct infection from SFTS-infected cats to humans should therefore be considered.


Subject(s)
Cat Diseases/virology , Hemorrhagic Fevers, Viral/veterinary , Phlebovirus/physiology , Animals , Biomarkers , Biopsy , Cat Diseases/diagnosis , Cat Diseases/mortality , Cat Diseases/transmission , Cats , Disease Susceptibility , Symptom Assessment
11.
Org Biomol Chem ; 17(20): 5047-5054, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31049538

ABSTRACT

The insertion of 1,1-difluoroallenes was carried out to form a C-C bond exclusively on their central carbon. o-Bromophenyl-bearing 1,1-difluoroallenes underwent intramolecular insertion in the presence of a palladium catalyst. Regioselective C-C bond formation occurred to form a six-membered carbocycle, leading to pharmaceutically and agrochemically promising difluoromethylated naphthalenes.

12.
Virus Res ; 264: 68-73, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30822430

ABSTRACT

RNA viruses exist as quasispecies containing many variants within their populations because of the error prone nature of viral RNA-dependent RNA polymerases. Quasispecies are not a simple collection of individual variants. Instead, internal interactions among variants provide quasispecies with unique evolvability. An example is 'cooperation' between wild-type and defective measles viruses, in which co-existence of a wild-type and a mutant genome produces a new phenotype. Such internal interactions presuppose efficient co-transmission of multiple genomes to the same cell, which is achieved by polyploid virions of some virus families or by a high multiplicity of infection. Recent studies have revealed that multiple viral genomes can also be transmitted simultaneously ('bloc transmission') by other mechanisms, strengthening the concept of internal interactions among viral quasispecies. Elucidation of the mechanisms of virus evolution, including internal interactions and bloc transmission, may provide rational strategies to solve such important problems of virus infections as drug-resistance, immune evasion, and acquisition of the new tropism and host range.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Viral , Virion/genetics , Viruses/genetics , Animals , DNA Viruses/genetics , Humans , Immune Evasion , Phenotype , Quasispecies , RNA Viruses/genetics , Virus Diseases/transmission , Virus Replication
13.
Trends Microbiol ; 27(2): 164-175, 2019 02.
Article in English | MEDLINE | ID: mdl-30220445

ABSTRACT

Measles virus (MeV) may persist in the brain, causing fatal neurodegenerative diseases, subacute sclerosing panencephalitis, and measles inclusion-body encephalitis. However, the mechanism of MeV propagation in the brain remains unexplained because human neurons affected by the diseases do not express the known receptors for MeV. Recent studies have revealed that certain changes in the ectodomain of the MeV fusion (F) protein play a key role in MeV spread in the brain. These changes destabilize the prefusion form of the F protein and render it hyperfusogenic, which in turn allows the virus to propagate in neurons. Based on crystal structures of the F protein, effective fusion inhibitors could be developed to treat these diseases.


Subject(s)
Brain/virology , Measles virus/pathogenicity , Measles/virology , Subacute Sclerosing Panencephalitis/virology , Amino Acid Substitution , Animals , Humans , Measles/drug therapy , Neurons/virology , Protein Conformation , Subacute Sclerosing Panencephalitis/drug therapy , Viral Fusion Proteins/chemistry
14.
Proc Natl Acad Sci U S A ; 115(10): 2496-2501, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29463726

ABSTRACT

Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.


Subject(s)
Antiviral Agents , Peptides , Viral Fusion Proteins , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Binding Sites , CHO Cells , Chlorocebus aethiops , Cricetulus , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Vero Cells , Viral Fusion Proteins/antagonists & inhibitors , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism
15.
J Virol ; 92(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29298883

ABSTRACT

Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


Subject(s)
Hemagglutinins, Viral/metabolism , Measles virus/metabolism , Measles/transmission , Neurons/metabolism , Subacute Sclerosing Panencephalitis/transmission , Viral Fusion Proteins/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chlorocebus aethiops , Hemagglutinins, Viral/genetics , Humans , Measles/genetics , Measles/metabolism , Measles/pathology , Measles virus/genetics , Measles virus/pathogenicity , Neurons/pathology , Neurons/virology , Signaling Lymphocytic Activation Molecule Family Member 1/genetics , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/metabolism , Subacute Sclerosing Panencephalitis/pathology , Vero Cells , Viral Fusion Proteins/genetics
16.
J Virol Methods ; 251: 22-29, 2018 01.
Article in English | MEDLINE | ID: mdl-28993122

ABSTRACT

Since discovering the Middle East respiratory syndrome coronavirus (MERS-CoV) as a causative agent of severe respiratory illness in the Middle East in 2012, serological testing has been conducted to assess antibody responses in patients and to investigate the zoonotic reservoir of the virus. Although the virus neutralization test is the gold standard assay for MERS diagnosis and for investigating the zoonotic reservoir, it uses live virus and so must be performed in high containment laboratories. Competitive ELISA (cELISA), in which a labeled monoclonal antibody (MAb) competes with test serum antibodies for target epitopes, may be a suitable alternative because it detects antibodies in a species-independent manner. In this study, novel MAbs against the spike protein of MERS-CoV were produced and characterized. One of these MAbs was used to develop a cELISA. The cELISA detected MERS-CoV-specific antibodies in sera from MERS-CoV-infected rats and rabbits immunized with the spike protein of MERS-CoV. The MAb-based cELISA was validated using sera from Ethiopian dromedary camels. Relative to the neutralization test, the cELISA detected MERS-CoV-specific antibodies in 66 Ethiopian dromedary camels with a sensitivity and specificity of 98% and 100%, respectively. The cELISA and neutralization test results correlated well (Pearson's correlation coefficients=0.71-0.76, depending on the cELISA serum dilution). This cELISA may be useful for MERS epidemiological investigations on MERS-CoV infection.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Camelus , Rabbits , Rats , Sensitivity and Specificity
17.
PLoS Negl Trop Dis ; 11(12): e0006076, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29240753

ABSTRACT

BACKGROUND: Cases of acute respiratory tract infection caused by Pteropine orthoreovirus (PRV) of the genus Orthoreovirus (family: Reoviridae) have been reported in Southeast Asia, where it was isolated from humans and bats. It is possible that PRV-associated respiratory infections might be prevalent in Southeast Asia. The clinical course of PRV is not fully elucidated. METHODS: The virulence, pathology, and pathogenesis of two PRV strains, a human-borne PRV strain (isolated from a patient, who returned to Japan from Bali, Indonesia in 2007) and a bat-borne PRV (isolated from a bat [Eonycteris spelaea] in the Philippines in 2013) were investigated in BALB/c mice using virological, pathological, and immunological study methods. RESULTS: The intranasal inoculation of BALB/c mice with human-borne PRV caused respiratory infection. In addition, all mice with immunity induced by pre-inoculation with a non-lethal dose of PRV were completely protected against lethal PRV infection. Mice treated with antiserum with neutralizing antibody activity after inoculation with a lethal dose of PRV showed a reduced fatality rate. In this mouse model, bat-borne PRV caused respiratory infection similar to human-borne PRV. PRV caused lethal respiratory disease in an animal model of PRV infection, in which BALB/c mice were used. CONCLUSIONS: The BALB/c mouse model might help to accelerate research on the virulence of PRV and be useful for evaluating the efficacy of therapeutic agents and vaccines for the treatment and prevention of PRV infection. PRV was shown for the first time to be a causative virus of respiratory disease on the basis of Koch's postulations by the additional demonstration that PRV caused respiratory disease in mice through their intranasal inoculation with PRV.


Subject(s)
Disease Models, Animal , Orthoreovirus/pathogenicity , Reoviridae Infections/pathology , Reoviridae Infections/virology , Virulence , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Asia, Southeastern , Body Weight , Bronchioles/pathology , Bronchioles/virology , Chiroptera/virology , Chlorocebus aethiops , Female , Genome, Viral , HEK293 Cells , Humans , Indonesia , Japan , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Orthoreovirus/classification , Orthoreovirus/genetics , Orthoreovirus/isolation & purification , Philippines , RNA, Viral/analysis , Reoviridae Infections/drug therapy , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Survival Rate , Vaccines/pharmacology , Vero Cells , Viral Load , Viral Plaque Assay
18.
Proc Natl Acad Sci U S A ; 113(41): 11579-11584, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27671656

ABSTRACT

Mumps virus (MuV) remains an important pathogen worldwide, causing epidemic parotitis, orchitis, meningitis, and encephalitis. Here we show that MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid in unbranched sugar chains as a receptor. Crystal structures of the MuV attachment protein hemagglutinin-neuraminidase (MuV-HN) alone and in complex with the α2,3-sialylated trisaccharide revealed that in addition to the interaction between the MuV-HN active site residues and sialic acid, other residues, including an aromatic residue, stabilize the third sugar of the trisaccharide. The importance of the aromatic residue and the third sugar in the MuV-HN-receptor interaction was confirmed by computational energy calculations, isothermal titration calorimetry studies, and glycan-binding assays. Furthermore, MuV-HN was found to bind more efficiently to unbranched α2,3-sialylated sugar chains compared with branched ones. Importantly, the strategically located aromatic residue is conserved among the HN proteins of sialic acid-using paramyxoviruses, and alanine substitution compromised their ability to support cell-cell fusion. These results suggest that not only the terminal sialic acid but also the adjacent sugar moiety contribute to receptor function for mumps and these paramyxoviruses. The distribution of structurally different sialylated glycans in tissues and organs may explain in part MuV's distinct tropism to glandular tissues and the central nervous system. In the crystal structure, the epitopes for neutralizing antibodies are located around the α-helices of MuV-HN that are not well conserved in amino acid sequences among different genotypes of MuV. This may explain the fact that MuV reinfection sometimes occurs.


Subject(s)
Mumps virus/metabolism , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , Trisaccharides/chemistry , Trisaccharides/metabolism , Animals , Antibodies, Neutralizing/chemistry , Cell Fusion , Cell Membrane/metabolism , Chlorocebus aethiops , Crystallography, X-Ray , Epitopes/chemistry , HEK293 Cells , Humans , Lactose/chemistry , Lactose/metabolism , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Domains , Receptors, Virus/chemistry , Thermodynamics , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism
19.
Infect Genet Evol ; 45: 26-32, 2016 11.
Article in English | MEDLINE | ID: mdl-27516187

ABSTRACT

The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) prompted a further exploration of their host diversification and geographic distribution by analyzing lung tissues from 376 fruit bats representing six genera (order Chiroptera, suborder Yinpterochiroptera, family Pteropodidae), collected in the Republic of the Philippines during 2008 to 2013. Hantavirus RNA was detected by RT-PCR in one of 15 Geoffroy's rousettes (Rousettus amplexicaudatus), captured in Quezon Memorial National Park on Luzon Island in 2009. Phylogenetic analyses of the S, M and L segments, using maximum-likelihood and Bayesian methods, showed that the newfound hantavirus, designated Quezon virus (QZNV), shared a common ancestry with hantaviruses hosted by insectivorous bats, in keeping with their evolutionary relationships and suggests that ancestral bats may have served as the early or original mammalian hosts of primordial hantaviruses. As the first hantavirus detected in a megabat or flying fox species, QZNV extends our knowledge about the reservoir host range.


Subject(s)
Chiroptera/virology , Orthohantavirus/classification , Orthohantavirus/genetics , Animals , Hantavirus Infections/veterinary , Hantavirus Infections/virology , Lung/virology , Philippines , Phylogeny
20.
Curr Top Microbiol Immunol ; 392: 219-29, 2016.
Article in English | MEDLINE | ID: mdl-26162566

ABSTRACT

RNA viruses usually consist of mutant spectra because of high error rates of viral RNA polymerases. Growth competition occurs among different viral variants, and the fittest clones predominate under given conditions. Individual variants, however, may not be entirely independent of each other, and internal interactions within mutant spectra can occur. Examples of cooperative and interfering interactions that exert enhancing and suppressing effects on replication of the wild-type virus, respectively, have been described, but their underlying mechanisms have not been well defined. It was recently found that the cooperation between wild-type and variant measles virus genomes produces a new phenotype through the heterooligomer formation of a viral protein. This observation provides a molecular mechanism underlying cooperative interactions within mutant spectra. Careful attention to individual sequences, in addition to consensus sequences, may disclose further examples of internal interactions within mutant spectra.


Subject(s)
Measles virus/physiology , Mutation , Animals , Evolution, Molecular , Humans , Measles/virology , Measles virus/classification , Measles virus/genetics , Models, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...