Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Nature ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294378

ABSTRACT

The PIWI-interacting RNA (piRNA) pathway guides the DNA methylation of young, active transposons during germline development in male mice1. piRNAs tether the PIWI protein MIWI2 (PIWIL4) to the nascent transposon transcript, resulting in DNA methylation through SPOCD1 (refs. 2-5). Transposon methylation requires great precision: every copy needs to be methylated but off-target methylation must be avoided. However, the underlying mechanisms that ensure this precision remain unknown. Here, we show that SPOCD1 interacts directly with SPIN1 (SPINDLIN1), a chromatin reader that primarily binds to H3K4me3-K9me3 (ref. 6). The prevailing assumption is that all the molecular events required for piRNA-directed DNA methylation occur after the engagement of MIWI2. We find that SPIN1 expression precedes that of both SPOCD1 and MIWI2. Furthermore, we demonstrate that young LINE1 copies, but not old ones, are marked by H3K4me3, H3K9me3 and SPIN1 before the initiation of piRNA-directed DNA methylation. We generated a Spocd1 separation-of-function allele in the mouse that encodes a SPOCD1 variant that no longer interacts with SPIN1. We found that the interaction between SPOCD1 and SPIN1 is essential for spermatogenesis and piRNA-directed DNA methylation of young LINE1 elements. We propose that piRNA-directed LINE1 DNA methylation requires a developmentally timed two-factor authentication process. The first authentication is the recruitment of SPIN1-SPOCD1 to the young LINE1 promoter, and the second is MIWI2 engagement with the nascent transcript. In summary, independent authentication events underpin the precision of piRNA-directed LINE1 DNA methylation.

2.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38744280

ABSTRACT

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Subject(s)
Centromere , Cohesins , Kinetochores , Mitosis , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Centromere/metabolism , Chickens , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosome Segregation , Kinetochores/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism
3.
Leuk Res Rep ; 21: 100398, 2024.
Article in English | MEDLINE | ID: mdl-38192502

ABSTRACT

T-cell lymphomas are aggressive neoplasms characterized by poor responses to current chemotherapeutic agents. Expression of the l-type amino acid transporter 1 (LAT 1, SLC7A5) allows for the expansion of healthy T-cell counterparts, and upregulation of LAT1 has been reported in precursor T-cell acute leukemia. Therefore, the expression of LAT1 was evaluated in a cohort of cutaneous and peripheral T-cell lymphomas. The findings demonstrated that LAT1 is upregulated in aggressive variants and absent in low-grade or indolent disease such as mycosis fungoides. In addition, upregulated LAT1 expression was seen in a large proportion of aggressive peripheral T-cell lymphomas, including peripheral T-cell lymphoma not otherwise specific (PTCL-NOS) and angioimmunoblastic T-cell lymphoma (AITL). The anti-tumor effects of two novel non-cleavable and bifunctional compounds, QBS10072S and QBS10096S, that combine a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate (aromatic ß-amino acid) were tested in vitro and in vivo in T-cell lymphoma cell lines. The findings demonstrated decreased survival of T-cell lymphoma lines with both compounds. Overall, the results demonstrate that LAT1 is a valuable biomarker for aggressive T-cell lymphoma counterparts and QBS10072S and QBS10096S are successful therapeutic options for these aggressive diseases.

4.
Nucleic Acids Res ; 51(15): 7882-7899, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37427792

ABSTRACT

Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.


Subject(s)
Histones , Nucleosomes , Trypanosoma brucei brucei , Chromatin/genetics , Chromatin/metabolism , DNA/metabolism , Histones/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Trypanosoma brucei brucei/metabolism
5.
Hum Mol Genet ; 32(6): 1010-1031, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36282542

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.


Subject(s)
Muscular Dystrophy, Emery-Dreifuss , Humans , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation , Fibrosis , Biomarkers
6.
Life Sci Alliance ; 5(12)2022 12.
Article in English | MEDLINE | ID: mdl-36122935

ABSTRACT

The DNA-binding protein MeCP2 is reported to bind methylated cytosine in CG and CA motifs in genomic DNA, but it was recently proposed that arrays of tandemly repeated CA containing either methylated or hydroxymethylated cytosine are the primary targets for MeCP2 binding and function. Here we investigated the predictions of this hypothesis using a range of published datasets. We failed to detect enrichment of cytosine modification at genomic CA repeat arrays in mouse brain regions and found no evidence for preferential MeCP2 binding at CA repeats. Moreover, we did not observe a correlation between the CA repeat density near genes and their degree of transcriptional deregulation when MeCP2 was absent. Our results do not provide support for the hypothesis that CA repeats are key mediators of MeCP2 function. Instead, we found that CA repeats are subject to CAC methylation to a degree that is typical of the surrounding genome and contribute modestly to MeCP2-mediated modulation of gene expression in accordance with their content of this canonical target motif.


Subject(s)
Methyl-CpG-Binding Protein 2 , Animals , Cytosine/metabolism , DNA/metabolism , DNA Methylation , Methyl-CpG-Binding Protein 2/metabolism , Mice , Neurons/metabolism
7.
Diagn Pathol ; 17(1): 53, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35752815

ABSTRACT

BACKGROUND: Primary intestinal T-cell lymphomas are uncommon malignancies that pose a diagnostic dilemma, because the clinical features and imaging findings commonly overlap with those encountered in inflammatory bowel diseases. CASE PRESENTATION: The current clinical case report describes the clinical history, laboratory findings and histopathological analysis from a patient with non-specific gastrointestinal symptoms with a presumptive clinical diagnosis of inflammatory bowel disease, and two intestinal biopsy specimens with non-specific findings. Due to the persistent symptoms a third biopsy was consistent with primary intestinal T-cell lymphoma, a diagnosis that was elusive for months after the initial presentation. Clinical correlation with laboratory and histopathological findings is required to establish a definitive diagnosis and to further stratify the patients. In addition, the neoplastic cells featured partial expression of CD30, which had relevant therapeutic implications. CONCLUSIONS: Suspicion for an intestinal T-cell lymphoproliferative disorder should always exist in patients with persistent abdominal symptoms with no clear etiology. The current discussion provides a summary and review of the key diagnostic histological features for the classification of primary intestinal T-cell lymphomas. In addition, the discussion describes how specific the histological findings are relevant for the clinical management decisions.


Subject(s)
Enteropathy-Associated T-Cell Lymphoma , Lymphoproliferative Disorders , Enteropathy-Associated T-Cell Lymphoma/diagnosis , Enteropathy-Associated T-Cell Lymphoma/pathology , Humans , Inflammation/pathology , Ki-1 Antigen , Lymphoproliferative Disorders/pathology , T-Lymphocytes/pathology
8.
Radiol Case Rep ; 17(4): 1163-1168, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35169421

ABSTRACT

Kikuchi Fujimoto Disease, originally discovered in 1972, is a rare lymphoproliferative disorder traditionally characterized by cervical lymphadenopathy, fevers, parotid gland enlargement, and several other nonspecific manifestations. Differentials include lymphoma, other viral diseases such as Epstein-Bar Virus, as well as other autoimmune conditions such as Systemic Lupus Erythematosus. Central nervous system involvement is exceptionally rare, with manifestations including meningitis as well as subdural effusions, as presented in this case. This review will summarize a case of a 24-year-old man with recurrent subdural effusions requiring intervention, subsequent relapse with abdominal lymphadenopathy, and possible IgG4 related disease. The background epidemiology, radiology, and potential pathophysiology will be reviewed.

9.
Nat Commun ; 13(1): 321, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027552

ABSTRACT

Little is known about how the observed fat-specific pattern of 3D-spatial genome organisation is established. Here we report that adipocyte-specific knockout of the gene encoding nuclear envelope transmembrane protein Tmem120a disrupts fat genome organisation, thus causing a lipodystrophy syndrome. Tmem120a deficiency broadly suppresses lipid metabolism pathway gene expression and induces myogenic gene expression by repositioning genes, enhancers and miRNA-encoding loci between the nuclear periphery and interior. Tmem120a-/- mice, particularly females, exhibit a lipodystrophy syndrome similar to human familial partial lipodystrophy FPLD2, with profound insulin resistance and metabolic defects that manifest upon exposure to an obesogenic diet. Interestingly, similar genome organisation defects occurred in cells from FPLD2 patients that harbour nuclear envelope protein encoding LMNA mutations. Our data indicate TMEM120A genome organisation functions affect many adipose functions and its loss may yield adiposity spectrum disorders, including a miRNA-based mechanism that could explain muscle hypertrophy in human lipodystrophy.


Subject(s)
Genetic Loci , Ion Channels/deficiency , Lipodystrophy/genetics , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Body Weight , Carbohydrate Metabolism , Diet, High-Fat , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation , Glucose Tolerance Test , Humans , Insulin Resistance , Ion Channels/metabolism , Lamin Type B/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Development/genetics , Nuclear Envelope/metabolism , Obesity/genetics , Organ Specificity , Oxidation-Reduction , RNA/genetics , RNA/metabolism
10.
J Mol Biol ; 433(19): 167200, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34400181

ABSTRACT

Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.


Subject(s)
Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , T-Lymphocytes/cytology , Amino Acid Motifs , Amino Acid Substitution , Animals , Bacterial Toxins/genetics , Bacterial Toxins/pharmacology , Cell Line , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Escherichia coli Proteins/pharmacology , Mice , Models, Molecular , Protein Conformation , Protein Domains , T-Lymphocytes/drug effects , Uridine Diphosphate N-Acetylglucosamine/metabolism
11.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33561390

ABSTRACT

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Subject(s)
DNA Methylation , Methyl-CpG-Binding Protein 2/metabolism , Neurons/metabolism , Animals , CpG Islands , Gene Knock-In Techniques , HeLa Cells , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Transgenic , Mutation , NIH 3T3 Cells , Neurons/pathology , Protein Domains , Rett Syndrome/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology
12.
J Clin Apher ; 35(4): 378-381, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32629539

ABSTRACT

As the COVID-19 pandemic continues to claim lives across the globe, insufficient data exists regarding the optimal treatment. It is well known that patients 55 years of age or older and patients with certain chronic diseases are at higher risk of severe illness, including acute respiratory distress syndrome and death. A potentially fatal pulmonary complication of sickle cell disease, acute chest syndrome, can be precipitated by acute infections, including respiratory viruses. We report the case of a patient with sickle cell disease (HbSC) who developed COVID-19 pneumonia and acute chest syndrome who was treated with emergent red blood cell exchange in order to avoid endotracheal intubation.


Subject(s)
Anemia, Sickle Cell/complications , Betacoronavirus , Coronavirus Infections/complications , Erythrocyte Transfusion/methods , Intubation, Intratracheal , Pandemics , Pneumonia, Viral/complications , Respiratory Insufficiency/therapy , Acute Chest Syndrome/etiology , Acute Chest Syndrome/therapy , Adult , Analgesics/therapeutic use , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 , Combined Modality Therapy , Contraindications, Procedure , Coronavirus Infections/drug therapy , Humans , Hydroxychloroquine/therapeutic use , Male , Methylprednisolone/therapeutic use , Oxygen Inhalation Therapy , Pneumonia, Viral/drug therapy , Respiration, Artificial , Respiratory Insufficiency/etiology , SARS-CoV-2
13.
Nucleic Acids Res ; 48(7): 3542-3552, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32064528

ABSTRACT

MeCP2 is a nuclear protein that binds to sites of cytosine methylation in the genome. While most evidence confirms this epigenetic mark as the primary determinant of DNA binding, MeCP2 is also reported to have an affinity for non-methylated DNA sequences. Here we investigated the molecular basis and in vivo significance of its reported affinity for non-methylated GT-rich sequences. We confirmed this interaction with isolated domains of MeCP2 in vitro and defined a minimal target DNA sequence. Binding depends on pyrimidine 5' methyl groups provided by thymine and requires adjacent guanines and a correctly orientated A/T-rich flanking sequence. Unexpectedly, full-length MeCP2 protein failed to bind GT-rich sequences in vitro. To test for MeCP2 binding to these motifs in vivo, we analysed human neuronal cells using ChIP-seq and ATAC-seq technologies. While both methods robustly detected DNA methylation-dependent binding of MeCP2 to mCG and mCAC, neither showed evidence of MeCP2 binding to GT-rich motifs. The data suggest that GT binding is an in vitro phenomenon without in vivo relevance. Our findings argue that MeCP2 does not read unadorned DNA sequence and therefore support the notion that its primary role is to interpret epigenetic modifications of DNA.


Subject(s)
DNA/chemistry , DNA/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Binding Sites , Cell Line , Cytosine/metabolism , Guanine/chemistry , Humans , Nucleotide Motifs , Protein Binding , Thymine/chemistry
14.
Epigenomes ; 3(1): 7, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31354981

ABSTRACT

Most human genes are associated with promoters embedded in non-methylated, G + C-rich CpG islands (CGIs). Not all CGIs are found at annotated promoters, however, raising the possibility that many serve as promoters for transcripts that do not code for proteins. To test this hypothesis, we searched for novel transcripts in embryonic stem cells (ESCs) that originate within orphan CGIs. Among several candidates, we detected a transcript that included three members of the let-7 micro-RNA family: Let-7a-1, let-7f-1, and let-7d. Deletion of the CGI prevented expression of the precursor RNA and depleted the included miRNAs. Mice homozygous for this mutation were sub-viable and showed growth and other defects. The results suggest that despite the identity of their seed sequences, members of the let-7 miRNA family exert distinct functions that cannot be complemented by other members.

15.
Proc Natl Acad Sci U S A ; 116(30): 14995-15000, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31289233

ABSTRACT

Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here, we integrate quantitative, multidimensional experimental analysis and mathematical modeling to indicate that MeCP2 is a global transcriptional regulator whose binding to DNA creates "slow sites" in gene bodies. We hypothesize that waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shockwaves in nonequilibrium physics transport models. This mechanism differs from conventional gene-regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings point to a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene-expression patterns are choreographed.


Subject(s)
DNA Methylation , Models, Theoretical , RNA Polymerase II/metabolism , Animals , Cell Line , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Protein Binding , Transcription Elongation, Genetic , Transcription Initiation, Genetic , Transcriptional Activation
16.
BMC Biol ; 15(1): 105, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29117863

ABSTRACT

BACKGROUND: TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. RESULTS: Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. CONCLUSIONS: Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.


Subject(s)
B30.2-SPRY Domain , RNA/metabolism , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
PLoS Genet ; 13(5): e1006793, 2017 May.
Article in English | MEDLINE | ID: mdl-28498846

ABSTRACT

Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC. MeCP2 binding to chromosomal DNA in mouse brain is proportional to mCAC + mCG density and unexpectedly defines large genomic domains within which transcription is sensitive to MeCP2 occupancy. Our results suggest that MeCP2 integrates patterns of mCAC and mCG in the brain to restrain transcription of genes critical for neuronal function.


Subject(s)
Brain/metabolism , DNA Methylation , Dinucleotide Repeats , Methyl-CpG-Binding Protein 2/metabolism , Trinucleotide Repeats , Animals , CpG Islands , Cytosine/metabolism , Epigenesis, Genetic , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Protein Binding , Rett Syndrome/genetics
18.
Mol Cell ; 62(6): 834-847, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27264872

ABSTRACT

Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation.


Subject(s)
Chromosome Positioning , Gene Expression Regulation, Developmental , Ion Channels/genetics , Membrane Proteins/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/genetics , Animals , Cell Differentiation , Cell Line , Down-Regulation , Humans , Ion Channels/metabolism , Kinetics , Membrane Proteins/metabolism , Mice , Nuclear Proteins/metabolism , RNA Interference , Transfection
19.
Cancer Res ; 76(10): 3097-108, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27197233

ABSTRACT

Aberrant hypermethylation of CpG islands (CGI) in human tumors occurs predominantly at repressed genes in the host tissue, but the preceding events driving this phenomenon are poorly understood. In this study, we temporally tracked epigenetic and transcriptomic perturbations that occur in a mouse model of liver carcinogenesis. Hypermethylated CGI events in the model were predicted by enrichment of the DNA modification 5-hydroxymethylcytosine (5hmC) and the histone H3 modification H3K27me3 at silenced promoters in the host tissue. During cancer progression, selected CGIs underwent hypo-hydroxymethylation prior to hypermethylation, while retaining H3K27me3. In livers from mice deficient in Tet1, a tumor suppressor involved in cytosine demethylation, we observed a similar loss of promoter core 5hmC, suggesting that reduced Tet1 activity at CGI may contribute to epigenetic dysregulation during hepatocarcinogenesis. Consistent with this possibility, mouse liver tumors exhibited reduced Tet1 protein levels. Similar to humans, DNA methylation changes at CGI in mice did not appear to be direct drivers of hepatocellular carcinoma progression, rather, dynamic changes in H3K27me3 promoter deposition correlated strongly with tumor-specific activation and repression of transcription. Overall, our results suggest that loss of promoter-associated 5hmC in liver tumors licenses reprograming of DNA methylation at silent CGI during progression. Cancer Res; 76(10); 3097-108. ©2016 AACR.


Subject(s)
5-Methylcytosine/analogs & derivatives , CpG Islands/genetics , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Liver Neoplasms, Experimental/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , 5-Methylcytosine/toxicity , Animals , Carcinoma, Hepatocellular , Cell Differentiation , Histones/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Mice , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
20.
Hum Mol Genet ; 25(3): 558-70, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26647311

ABSTRACT

Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.


Subject(s)
Alleles , Methyl-CpG-Binding Protein 2/genetics , Mutation, Missense , Rett Syndrome/genetics , Rett Syndrome/pathology , Amino Acid Substitution , Animals , DNA/genetics , DNA/metabolism , DNA Methylation , Disease Models, Animal , Gene Expression Regulation , Gene Knock-In Techniques , Humans , Male , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Transgenic , Models, Molecular , Phenotype , Protein Binding , Rett Syndrome/metabolism , Rett Syndrome/mortality , Severity of Illness Index , Signal Transduction , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL