Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 8(1): 154, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816743

ABSTRACT

Human Cytomegalovirus (HCMV) is the leading infectious congenital infection globally and the most common viral infection in transplant recipients, therefore identifying a vaccine for HCMV is a top priority. Humoral immunity is a correlate of protection for HCMV infection. The most effective vaccine tested to date, which achieved 50% reduction in acquisition of HCMV, was comprised of the glycoprotein B protein given with an oil-in-water emulsion adjuvant MF59. We characterize gB-specific monoclonal antibodies isolated from individuals vaccinated with a disabled infectious single cycle (DISC) CMV vaccine, V160, and compare these to the gB-specific monoclonal antibody repertoire isolated from naturally-infected individuals. We find that vaccination with V160 resulted in gB-specific antibodies that bound homogenously to gB expressed on the surface of a cell in contrast to antibodies isolated from natural infection which variably bound to cell-associated gB. Vaccination resulted in a similar breadth of gB-specific antibodies, with binding profile to gB genotypes 1-5 comparable to that of natural infection. Few gB-specific neutralizing antibodies were isolated from V160 vaccinees and fewer antibodies had identifiable gB antigenic domain specificity compared to that of naturally-infected individuals. We also show that glycosylation of gB residue N73 may shield binding of gB-specific antibodies.

3.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36402135

ABSTRACT

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Subject(s)
Immunoglobulin M , Pregnancy , Zika Virus Infection , Zika Virus , Animals , Female , Mice , Pregnancy/immunology , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Neutralization Tests , Zika Virus Infection/immunology , Immunoglobulin M/immunology , Immunoglobulin M/isolation & purification
4.
J Infect Dis ; 226(9): 1667-1677, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35970817

ABSTRACT

BACKGROUND: Human cytomegalovirus (HCMV) is the most common infectious complication of organ transplantation and cause of birth defects worldwide. There are limited therapeutic options and no licensed vaccine to prevent HCMV infection or disease. To inform development of HCMV antibody-based interventions, a previous study identified individuals with potent and broad plasma HCMV-neutralizing activity, termed elite neutralizers (ENs), from a cohort of HCMV-seropositive (SP) blood donors. However, the specificities and functions of plasma antibodies associated with EN status remained undefined. METHODS: We sought to determine the plasma antibody specificities, breadth, and Fc-mediated antibody effector functions associated with the most potent HCMV-neutralizing responses in plasma from ENs (n = 25) relative to that from SP donors (n = 19). We measured antibody binding against various HCMV strains and glycoprotein targets and evaluated Fc-mediated effector functions, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). RESULTS: We demonstrate that ENs have elevated immunoglobulin G binding responses against multiple viral glycoproteins, relative to SP donors. Our study also revealed potent HCMV-specific antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis activity of plasma from ENs. CONCLUSIONS: We conclude that antibody responses against multiple glycoprotein specificities may be needed to achieve potent plasma neutralization and that potently HCMV elite-neutralizing plasma antibodies can also mediate polyfunctional responses.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Immunoglobulin G , Antibodies, Neutralizing , Antibody Formation , Antibodies, Viral , Viral Envelope Proteins
5.
Virology ; 548: 182-191, 2020 09.
Article in English | MEDLINE | ID: mdl-32838941

ABSTRACT

Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.


Subject(s)
Antibodies, Viral/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Viral Envelope Proteins/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibody Specificity , Cytomegalovirus/genetics , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/virology , Female , Humans , Male , Viral Envelope Proteins/genetics , Young Adult
6.
PLoS Negl Trop Dis ; 13(8): e0007648, 2019 08.
Article in English | MEDLINE | ID: mdl-31449521

ABSTRACT

Zika virus (ZIKV) is a newly-identified infectious cause of congenital disease. Transplacental transfer of maternal IgG to the fetus plays an important role in preventing many neonatal infections. However, antibody transfer may also have negative consequences, such as mediating enhancement of flavivirus infections in early life, or trafficking of virus immune complexes to the fetal compartment. ZIKV infection produces placental pathology which could lead to impaired IgG transfer efficiency as occurs in other maternal infections, such as HIV-1 and malaria. In this study, we asked whether ZIKV infection during pregnancy impairs transplacental transfer of IgG. We enrolled pregnant women with fever or rash in a prospective cohort in Vitoria, Brazil during the recent ZIKV epidemic. ZIKV and dengue virus (DENV)-specific IgG, ZIKV and DENV neutralizing antibodies, and routine vaccine antigen-specific IgG were measured in maternal samples collected around delivery and 20 paired cord blood samples. We concluded that 8 of these mothers were infected with ZIKV during pregnancy and 12 were ZIKV-uninfected. The magnitude of flavivirus-specific IgG, neutralizing antibody, and vaccine-elicited IgG were highly correlated between maternal plasma and infant cord blood in both ZIKV-infected and -uninfected mother-infant pairs. Moreover, there was no difference in the magnitude of plasma flavivirus-specific IgG levels between mothers and infants regardless of ZIKV infection status. Our data suggests that maternal ZIKV infection during pregnancy does not impair the efficiency of placental transfer of flavivirus-specific, functional, and vaccine-elicited IgG. These findings have implications for the neonatal outomes of maternal ZIKV infection and optimal administration of antibody-based ZIKV vaccines and therapeutics.


Subject(s)
Antibodies, Viral/blood , Fetal Blood/immunology , Immunoglobulin G/blood , Pregnancy Complications, Infectious/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Brazil , Dengue Virus/immunology , Female , Humans , Pregnancy , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...