Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Genes (Basel) ; 15(5)2024 05 09.
Article in English | MEDLINE | ID: mdl-38790231

ABSTRACT

Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola.


Subject(s)
Basidiomycota , Disease Resistance , Gene Expression Regulation, Plant , Pinus , Plant Diseases , Transcriptome , Pinus/genetics , Pinus/microbiology , Pinus/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Basidiomycota/pathogenicity , Seedlings/genetics , Seedlings/microbiology , Seedlings/immunology , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Genome Biol Evol ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38701023

ABSTRACT

Over 400 million years old, scorpions represent an ancient group of arachnids and one of the first animals to adapt to life on land. Presently, the lack of available genomes within scorpions hinders research on their evolution. This study leverages ultralong nanopore sequencing and Pore-C to generate the first chromosome-level assembly and annotation for the desert hairy scorpion, Hadrurus arizonensis. The assembled genome is 2.23 Gb in size with an N50 of 280 Mb. Pore-C scaffolding reoriented 99.6% of bases into nine chromosomes and BUSCO identified 998 (98.6%) complete arthropod single copy orthologs. Repetitive elements represent 54.69% of the assembled bases, including 872,874 (29.39%) LINE elements. A total of 18,996 protein-coding genes and 75,256 transcripts were predicted, and extracted protein sequences yielded a BUSCO score of 97.2%. This is the first genome assembled and annotated within the family Hadruridae, representing a crucial resource for closing gaps in genomic knowledge of scorpions, resolving arachnid phylogeny, and advancing studies in comparative and functional genomics.


Subject(s)
Genome , Scorpions , Animals , Scorpions/genetics , Chromosomes/genetics , Phylogeny , Molecular Sequence Annotation , Evolution, Molecular
3.
G3 (Bethesda) ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781445

ABSTRACT

The first chromosome-scale reference genome of the rare narrow-endemic African moss Physcomitrellopsis africana is presented here. Assembled from 73x nanopore long reads and 163x BGI-seq short reads, the 414 Mb reference comprises 26 chromosomes and 22,925 protein-coding genes (BUSCO: C:94.8%[D:13.9%]). This genome holds two genes that withstood rigorous filtration of microbial contaminants, have no homolog in other land plants and are thus interpreted as resulting from two unique horizontal gene transfers from microbes. Further, Physcomitrellopsis africana shares 176 of the 273 published HGT candidates identified in Physcomitrium patens, but lacks 98 of these, highlighting that perhaps as many as 91 genes were acquired in P. patens in the last 40 million years following its divergence from its common ancestor with P. africana. These observations suggest rather continuous gene gains via HGT followed by potential losses, during the diversification of the Funariaceae. Our findings showcase both dynamic flux in plant HGTs over evolutionarily "short" timescales, alongside enduring impacts of successful integrations, like those still functionally maintained in extant Physcomitrellopsis africana. Furthermore, this study describes the informatic processes employed to distinguish contaminants from candidate HGT events.

4.
Evol Appl ; 17(4): e13669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38633133

ABSTRACT

DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.

5.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38526344

ABSTRACT

Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.


Subject(s)
Genome, Plant , Molecular Sequence Annotation , Pinus , Pinus/genetics , Pinus/parasitology , Genomics/methods , Endangered Species , High-Throughput Nucleotide Sequencing
6.
Genome Biol Evol ; 16(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38190231

ABSTRACT

We present a high-quality assembly and annotation of the periodical cicada species, Magicicada septendecula (Hemiptera: Auchenorrhyncha: Cicadidae). Periodical cicadas have a significant ecological impact, serving as a food source for many mammals, reptiles, and birds. Magicicada are well known for their massive emergences of 1 to 3 species that appear in different locations in the eastern United States nearly every year. These year classes ("broods") emerge dependably every 13 or 17 yr in a given location. Recently, it has become clear that 4-yr early or late emergences of a sizeable portion of a population are an important part of the history of brood formation; however, the biological mechanisms by which they track the passage of time remain a mystery. Using PacBio HiFi reads in conjunction with Hi-C proximity ligation data, we have assembled and annotated the first whole genome for a periodical cicada, an important resource for future phylogenetic and comparative genomic analysis. This also represents the first quality genome assembly and annotation for the Hemipteran superfamily Cicadoidea. With a scaffold N50 of 518.9 Mb and a complete BUSCO score of 96.7%, we are confident that this assembly will serve as a vital resource toward uncovering the genomic basis of periodical cicadas' long, synchronized life cycles and will provide a robust framework for further investigations into these insects.


Subject(s)
Hemiptera , Animals , United States , Phylogeny , Hemiptera/genetics , Life Cycle Stages , Genomics , Chromosomes , Mammals/genetics
7.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273516

ABSTRACT

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Subject(s)
Finches , Muscidae , Parasites , Animals , Humans , Finches/parasitology , Ecuador
8.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37703053

ABSTRACT

With the advent of affordable and more accurate third-generation sequencing technologies, and the associated bioinformatic tools, it is now possible to sequence, assemble, and annotate more species of conservation concern than ever before. Juglans cinerea, commonly known as butternut or white walnut, is a member of the walnut family, native to the Eastern United States and Southeastern Canada. The species is currently listed as Endangered on the IUCN Red List due to decline from an invasive fungus known as Ophiognomonia clavigignenti-juglandacearum (Oc-j) that causes butternut canker. Oc-j creates visible sores on the trunks of the tree which essentially starves and slowly kills the tree. Natural resistance to this pathogen is rare. Conserving butternut is of utmost priority due to its critical ecosystem role and cultural significance. As part of an integrated undergraduate and graduate student training program in biodiversity and conservation genomics, the first reference genome for Juglans cinerea is described here. This chromosome-scale 539 Mb assembly was generated from over 100 × coverage of Oxford Nanopore long reads and scaffolded with the Juglans mandshurica genome. Scaffolding with a closely related species oriented and ordered the sequences in a manner more representative of the structure of the genome without altering the sequence. Comparisons with sequenced Juglandaceae revealed high levels of synteny and further supported J. cinerea's recent phylogenetic placement. Comparative assessment of gene family evolution revealed a significant number of contracting families, including several associated with biotic stress response.


Subject(s)
Juglans , Humans , United States , Juglans/genetics , Phylogeny , Ecosystem , Chromosomes , North America
9.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014212

ABSTRACT

Whitebark pine (WBP, Pinus albicaulis ) is a white pine of subalpine regions in western contiguous US and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola ) and additional threats from mountain pine beetle ( Dendroctonus ponderosae ), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short-reads of haploid megametophyte tissue and Oxford Nanopore long-reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gbp of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gbp). Approximately 87.2% (24.0 Gbp) of total sequence was placed on the twelve WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich-repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the three subclasses of NLRs (TNL, CNL, RNL). Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo assembled transcriptomes.

10.
Appl Plant Sci ; 11(4): e11533, 2023.
Article in English | MEDLINE | ID: mdl-37601314

ABSTRACT

Premise: Robust standards to evaluate quality and completeness are lacking in eukaryotic structural genome annotation, as genome annotation software is developed using model organisms and typically lacks benchmarking to comprehensively evaluate the quality and accuracy of the final predictions. The annotation of plant genomes is particularly challenging due to their large sizes, abundant transposable elements, and variable ploidies. This study investigates the impact of genome quality, complexity, sequence read input, and method on protein-coding gene predictions. Methods: The impact of repeat masking, long-read and short-read inputs, and de novo and genome-guided protein evidence was examined in the context of the popular BRAKER and MAKER workflows for five plant genomes. The annotations were benchmarked for structural traits and sequence similarity. Results: Benchmarks that reflect gene structures, reciprocal similarity search alignments, and mono-exonic/multi-exonic gene counts provide a more complete view of annotation accuracy. Transcripts derived from RNA-read alignments alone are not sufficient for genome annotation. Gene prediction workflows that combine evidence-based and ab initio approaches are recommended, and a combination of short and long reads can improve genome annotation. Adding protein evidence from de novo assemblies, genome-guided transcriptome assemblies, or full-length proteins from OrthoDB generates more putative false positives as implemented in the current workflows. Post-processing with functional and structural filters is highly recommended. Discussion: While the annotation of non-model plant genomes remains complex, this study provides recommendations for inputs and methodological approaches. We discuss a set of best practices to generate an optimal plant genome annotation and present a more robust set of metrics to evaluate the resulting predictions.

11.
Plant Cell Environ ; 46(5): 1705-1725, 2023 05.
Article in English | MEDLINE | ID: mdl-36541367

ABSTRACT

Fusarium circinatum poses a threat to both commercial and natural pine forests. Large variation in host resistance exists between species, with many economically important species being susceptible. Development of resistant genotypes could be expedited and optimised by investigating the molecular mechanisms underlying host resistance and susceptibility as well as increasing the available genetic resources. RNA-seq data, from F. circinatum inoculated and mock-inoculated ca. 6-month-old shoot tissue at 3- and 7-days postinoculation, was generated for three commercially important tropical pines, Pinus oocarpa, Pinus maximinoi and Pinus greggii. De novo transcriptomes were assembled and used to investigate the NLR and PR gene content within available pine references. Host responses to F. circinatum challenge were investigated in P. oocarpa (resistant) and P. greggii (susceptible), in comparison to previously generated expression profiles from Pinus tecunumanii (resistant) and Pinus patula (susceptible). Expression results indicated crosstalk between induced salicylate, jasmonate and ethylene signalling is involved in host resistance and compromised in susceptible hosts. Additionally, higher constitutive expression of sulfur metabolism and flavonoid biosynthesis in resistant hosts suggest involvement of these metabolites in resistance.


Subject(s)
Fusarium , Pinus , Transcriptome/genetics , Fusarium/physiology , Genotype , Pinus/genetics , Plant Diseases/genetics
12.
G3 (Bethesda) ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36454025

ABSTRACT

Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more "complete" genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.


Subject(s)
Pseudotsuga , Transcriptome , Pseudotsuga/genetics , Gene Expression Profiling , Molecular Sequence Annotation , Base Sequence
13.
Tree Physiol ; 43(2): 315-334, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36210755

ABSTRACT

Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.


Subject(s)
Abies , Abies/physiology , Transcriptome , Droughts , Epigenesis, Genetic , Forests , Trees/genetics , Genomics
14.
Ecol Evol ; 12(10): e9369, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36225821

ABSTRACT

Climate changes, together with geographical barriers imposed by the Sierra Madre Oriental and the Chihuahuan Desert, have shaped the genetic diversity and spatial distribution of different species in northern Mexico. Pinus pinceana Gordon & Glend. tolerates extremely arid conditions. Northern Mexico became more arid during the Quaternary, modifying ecological communities. Here, we try to identify the processes underlying the demographic history of P. pinceana and characterize its genetic diversity using 3100 SNPs from genotyping by sequencing 90 adult individuals from 10 natural populations covering the species' entire geographic distribution. We inferred its population history and contrasted possible demographic scenarios of divergence that modeled the genetic diversity present in this restricted pinyon pine; in support, the past distribution was reconstructed using climate from the Last Glacial Maximum (LGM, 22 kya). We inferred that P. pinceana diverged into two lineages ~2.49 Ma (95% CI 3.28-1.62), colonizing two regions: the Sierra Madre Oriental (SMO) and the Chihuahuan Desert (ChD). Our results of population genomic analyses reveal the presence of heterozygous SNPs in all populations. In addition, low migration rates across regions are probably related to glacial-interglacial cycles, followed by the gradual aridification of the Chihuahuan Desert during the Holocene.

15.
Sci Rep ; 12(1): 7481, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523985

ABSTRACT

Expression quantitative trait loci (eQTLs) are associations between genetic variants, such as Single Nucleotide Polymorphisms (SNPs), and gene expression. eQTLs are an important tool to understand the genetic variance of gene expression of complex phenotypes. eQTLs analyses are common in biomedical models but are scarce in woody crop species such as fruit trees or grapes. In this study, a comprehensive bioinformatic analysis was conducted leveraging with expression data from two different growth stages, around ripening onset, of 10 genotypes of grape (Vitis vinifera L.). A total of 2170 cis-eQTL were identified in 212 gene modulated at ripening onset. The 48% of these DEGs have a known function. Among the annotated protein-coding genes, terpene synthase, auxin-regulatory factors, GRFS, ANK_REP_REGION domain-containing protein, Kinesin motor domain-containing protein and flavonol synthase were noted. This new inventory of cis-eQTLs influencing gene expression during fruit ripening will be an important resource to examine variation for this trait and will help to elucidate the complex genetic architecture underlying this process in grape.


Subject(s)
Vitis , Computational Biology , Fruit/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Vitis/metabolism
16.
Nat Plants ; 8(4): 389-401, 2022 04.
Article in English | MEDLINE | ID: mdl-35437001

ABSTRACT

Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.


Subject(s)
Cycas , Cycadopsida/genetics , Cycas/genetics , Genes, Plant , Ginkgo biloba/genetics , Phylogeny , Seeds/genetics
17.
BMC Plant Biol ; 22(1): 143, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35337270

ABSTRACT

Aronia is a group of deciduous fruiting shrubs, of the Rosaceae family, native to eastern North America. Interest in Aronia has increased because of the high levels of dietary antioxidants in Aronia fruits. Using Illumina RNA-seq transcriptome analysis, this study investigates the molecular mechanisms of polyphenol biosynthesis during Aronia fruit development. Six A. melanocarpa (diploid) accessions were collected at four fruit developmental stages. De novo assembly was performed with 341 million clean reads from 24 samples and assembled into 90,008 transcripts with an average length of 801 bp. The transcriptome had 96.1% complete according to Benchmarking Universal Single-Copy Orthologs (BUSCOs). The differentially expressed genes (DEGs) were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and polysaccharide metabolic processes based on significant Gene Ontology (GO) biological terms. The expression of ten anthocyanin biosynthetic genes showed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed using qRT-PCR expression analyses. Additionally, transcription factor genes were identified among the DEGs. Using a transient expression assay, we confirmed that AmMYB10 induces anthocyanin biosynthesis. The de novo transcriptome data provides a valuable resource for the understanding the molecular mechanisms of fruit anthocyanin biosynthesis in Aronia and species of the Rosaceae family.


Subject(s)
Photinia , Transcriptome , Anthocyanins/metabolism , Fruit , Gene Expression Regulation, Plant , Photinia/genetics , Photinia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Ecol Evol ; 12(2): e8611, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222971

ABSTRACT

In land plants, heteroblasty broadly refers to a drastic change in morphology during growth through ontogeny. Juniperus flaccida and Pinus cembroides are conifers of independent lineages known to exhibit leaf heteroblasty between the juvenile and adult life stage of development. Juvenile leaves of P. cembroides develop spirally on the main stem and appear decurrent, flattened, and needle-like; whereas adult photosynthetic leaves are triangular or semi-circular needle-like, and grow in whorls on secondary or tertiary compact dwarf shoots. By comparison, J. flaccida juvenile leaves are decurrent and needle-like, and adult leaves are compact, short, and scale-like. Comparative analyses were performed to evaluate differences in anatomy and gene expression patterns between developmental phases in both species. RNA from 12 samples was sequenced and analyzed with available software. They were assembled de novo from the RNA-Seq reads. Following assembly, 63,741 high-quality transcripts were functionally annotated in P. cembroides and 69,448 in J. flaccida. Evaluation of the orthologous groups yielded 4140 shared gene families among the four references (adult and juvenile from each species). Activities related to cell division and development were more abundant in juveniles than adults in P. cembroides, and more abundant in adults than juveniles in J. flaccida. Overall, there were 509 up-regulated and 81 down-regulated genes in the juvenile condition of P. cembroides and 14 up-regulated and 22 down-regulated genes in J. flaccida. Gene interaction network analysis showed evidence of co-expression and co-localization of up-regulated genes involved in cell wall and cuticle formation, development, and phenylpropanoid pathway, in juvenile P. cembroides leaves. Whereas in J. flaccida, differential expression and gene interaction patterns were detected in genes involved in photosynthesis and chloroplast biogenesis. Although J. flaccida and P. cembroides both exhibit leaf heteroblastic development, little overlap was detected, and unique genes and pathways were highlighted in this study.

19.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-35100403

ABSTRACT

Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.


Subject(s)
Sequoia , Biological Evolution , Chromosomes , Genome , High-Throughput Nucleotide Sequencing , Sequoia/genetics
20.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042802

ABSTRACT

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Subject(s)
Base Sequence/genetics , Eukaryota/genetics , Genomics/standards , Animals , Biodiversity , Genomics/methods , Humans , Reference Standards , Reference Values , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...