Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 378
Filter
1.
ACS Synth Biol ; 13(6): 1633-1646, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38860462

ABSTRACT

A growing number of applications require simultaneous detection of multiplexed nucleic acid targets in a single reaction, which enables higher information density in combination with reduced assay time and cost. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-Cas system have broad applications for the detection of nucleic acids due to their strong specificity, high sensitivity, and excellent programmability. However, realizing multiplexed detection is still challenging for the CRISPR-Cas system due to the nonspecific collateral cleavage activity, limited signal reporting strategies, and possible cross-reactions. In this review, we summarize the principles, strategies, and features of multiplexed detection based on the CRISPR-Cas system and further discuss the challenges and perspective.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Biosensing Techniques/methods , Nucleic Acids/analysis , Nucleic Acids/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Gene ; 927: 148696, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878986

ABSTRACT

Selecting appropriate reference genes is crucial for ensuring the accuracy and reliability of gene expression study using reverse transcription-quantitative PCR (RT-qPCR). To screen the optimal reference genes for analyzing gene expression in different tissues of the vector leafhopper Psammotettix striatus which causes extensive damage to a wide range of crops by vectoring multiple plant pathogenic microorganisms, the transcriptome data from Malpighian tubules (MTs) of P. striatus were mined. Twenty alternative candidate reference genes were initially selected for screening, among which seven genes with diverse Gene Ontology (GO) annotations were choosed as candidate reference genes, i.e., ribosomal protein L7A (RPL7A), ribosomal protein S28 (RPS28), ribosomal protein L22 (RPL22), ribosomal protein LP2 (RPLP2), H3 histone family 3A (H3F3A), elongation factor 1γ (EF-1γ), and elongation factor 1α (EF-1α). Gene expression levels in different tissues of P. striatus adults were examined using RT-qPCR, and their expression stability was analyzed using multiple reference gene screening software. This study revealed EF-1α as the most abundantly expressed gene, while RPL22 exhibited the lowest expression levels. EF-1α showed the most stable expression, whereas RPS28 showed the least stability. Various software tools confirmed EF-1α as the most stable single reference gene, and EF-1α and RPLP2 an optimal combination. This study provides a foundation for future investigation of the transmission of pathogenic microorganisms mediated by the vector leafhoppers, the function of the MTs, the biosynthesis of brochosomes, the coevolutionary processes and nutritional interactions of symbionts and host insects, and the gene expression study of other sap-sucking insects.

3.
Angew Chem Int Ed Engl ; : e202409079, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874984

ABSTRACT

Despite the widespread investigations on the M-N-C type single atom catalysts (SACs) for oxygen evolution reaction (OER), an internal conflict between its intrinsic thermodynamically structural instability and apparent catalytic steadiness has long been ignored. Clearly unfolding this contradiction is necessary and meaningful for understanding the real structure-property relation of SACs. Herein, by using the well-designed pH-dependent metal leaching experiments and X-ray absorption spectroscopy, an unconventional structure reconstruction of M-N-C catalyst during OER process was observed. Combining with density functional theory calculations, the initial Ni-N coordination is easily broken in the presence of adsorbed OH*, leading to favorable formation of Ni-O coordination. The formed Ni-O works stably as the real active center for OER catalysis in alkaline media but unstably in acid, which clearly explains the existing conflict. Unveiling the internal contradiction between structural instability and catalytic steadiness provides valuable insights for rational design of single atom OER catalysts.

4.
Front Zool ; 21(1): 15, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863001

ABSTRACT

The most extraordinary systems of symbiosis in insects are found in the suborder Auchenorrhyncha of Hemiptera, which provide unique perspectives for uncovering complicated insect-microbe symbiosis. We investigated symbionts associated with bacteriomes and fat bodies in six cicada species, and compared transmitted cell number ratio of related symbionts in ovaries among species. We reveal that Sulcia and Hodgkinia or a yeast-like fungal symbiont (YLS) are segregated from other host tissues by the bacteriomes in the nymphal stage, then some of them may migrate to other organs (i.e., fat bodies and ovaries) during host development. Particularly, YLS resides together with Sulcia in the "symbiont ball" of each egg and the bacteriomes of young-instar nymphs, but finally migrates to the fat bodies of adults in the majority of Hodgkinia-free cicadas, whereas it resides in both bacteriome sheath and fat bodies of adults in a few other species. The transmitted Sulcia/YLS or Sulcia/Hodgkinia cell number ratio in ovaries varies significantly among species, which could be related to the distribution and/or lineage splitting of symbiont(s). Rickettsia localizes to the nuclei of bacteriomes and fat bodies in some species, but it was not observed to be transmitted to the ovaries, indicating that this symbiont may be acquired from environments or from father to offspring. The considerable difference in the transovarial transmission process of symbionts suggests that cellular mechanisms underlying the symbiont transmission are complex. Our results may provide novel insights into insect-microbe symbiosis.

5.
Environ Sci Technol ; 58(21): 9436-9445, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691809

ABSTRACT

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.


Subject(s)
Hydrogen Peroxide , Titanium , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Titanium/chemistry , Iron/chemistry , Hydroxyl Radical/chemistry , Catalysis , Electrodes
6.
NPJ Sci Food ; 8(1): 28, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744951

ABSTRACT

Finger millet, a cereal grain widely consumed in India and Africa, has gained more attention in recent years due to its high dietary fibre (arabinoxylan) and trace mineral content, and its climate resilience. The aim of this study was to understand the interactions between potassium (K+), calcium (Ca2+) and zinc (Zn2+) ions and the arabinoxylan structure and determine its ion-binding capacity. Three variations of a proposed model of the arabinoxylan structure were constructed and first principles Density Functional Theory calculations were carried out to determine the cation-binding capacity of the arabinoxylan complexes. Zn2+-arabinoxylan complexes were highly unstable and thermodynamically unfavourable in all three models. Ca2+ and K+ ions, however, form thermodynamically stable complexes, particularly involving two glucuronic acid residues as a binding pocket. Glucuronic acid residues are found to play a key role in stabilising the cation-arabinoxylan complex, and steric effects are more important to the stability than charge density. Our results highlight the most important structural features of the millet fibre regarding ion-storage capacity, and provide valuable preliminary data for confirmatory experimental studies and for the planning of clinical trials where the bioavailability of bound ions following digestion may be tested.

7.
Chin J Nat Med ; 22(5): 416-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38796215

ABSTRACT

Bazi Bushen (BZBS), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy in testicular dysfunction within D-galactose and NaNO2 mouse models. This study aimed to ascertain if BZBS could also mitigate the decline in testicular function associated with natural aging. Therefore, male aged mice were employed to evaluate the preventive effects of BZBS on male reproductive aging. This was achieved by assessing sex hormone production, testicular histomorphology, and spermatogenesis. Relative to the untreated aged control group, BZBS administration elevated the levels of sex hormones and spermatocyte populations and preserved normal testicular structure in aged mice. Notably, spermatogenesis was maintained. Further analyses, including malondialdehyde (MDA) assays and real-time PCR, indicated that BZBS diminished testicular oxidative stress and the inflammatory burden. Corroborating these findings, mice treated with BZBS exhibited reductions in the populations of senescent and apoptotic cells within the seminiferous tubules, suggesting alleviated cellular damage. In contrast, we observed that rapamycin, a drug known for its longevity benefits, induced excessive testicular apoptosis and did not decrease lipid peroxidation. Collectively, our results highlight BZBS's promising clinical potential in counteracting male reproductive aging, underlining its mechanisms of action.


Subject(s)
Aging , Drugs, Chinese Herbal , Oxidative Stress , Spermatogenesis , Testis , Animals , Male , Mice , Aging/drug effects , Drugs, Chinese Herbal/pharmacology , Testis/drug effects , Testis/metabolism , Oxidative Stress/drug effects , Spermatogenesis/drug effects , Reproduction/drug effects , Apoptosis/drug effects , Humans , Malondialdehyde/metabolism , Gonadal Steroid Hormones/metabolism
8.
Chin Med ; 19(1): 61, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594761

ABSTRACT

BACKGROUND: Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS: We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or ß-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS: The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS: BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.

9.
Nat Commun ; 15(1): 3233, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622140

ABSTRACT

Electrochemical hydrogenation of acetonitrile based on well-developed proton exchange membrane electrolyzers holds great promise for practical production of ethylamine. However, the local acidic condition of proton exchange membrane results in severe competitive proton reduction reaction and poor selection toward acetonitrile hydrogenation. Herein, we conduct a systematic study to screen various metallic catalysts and discover Pd/C exhibits a 43.8% ethylamine Faradaic efficiency at the current density of 200 mA cm-2 with a specific production rate of 2912.5 mmol g-1 h-1, which is about an order of magnitude higher than the other screened metal catalysts. Operando characterizations indicate the in-situ formed PdHx is the active centers for catalytic reaction and the adsorption strength of the *MeCH2NH2 intermediate dictates the catalytic selectivity. More importantly, the theoretical analysis reveals a classic d-band mediated volcano curve to describe the relation between the electronic structures of catalysts and activity, which could provide valuable insights for designing more effective catalysts for electrochemical hydrogenation reactions and beyond.

10.
J Colloid Interface Sci ; 664: 360-370, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38479272

ABSTRACT

Manganese sulfide (MnS) is a promising converion-type anode for sodium storage, owing to the virtues of high theoretical capacity, coupled with it crustal abundance and cost-effectiveness. Nevertheless, MnS suffers from inadequate electronic conductivity, sluggish Na+ reaction kinetics and considerable volume variation during discharge/charge process, thereby impeding its rate capability and capacity retention. Herein, a novel lamellar heterostructured composite of Fe-doped MnS nanoparticles/positively charged reduced graphene oxide (Fe-MnS/PG) was synthesized to overcome these issues. The Fe-doping can accelerate the ion/electron transfer, endowing fast electrochemical kinetics of MnS. Meanwhile, the graphene space confinement with strong MnSC bond interactions can facilite the interfacial electron transfer, hamper volume expansion and aggregation of MnS nanoparticles, stabilizing the structural integrity, thus improving the Na+ storage reversibility and cyclic stability. Combining the synergistic effect of Fe-doping and space confinement with strong MnSC bond interactions, the as-produced Fe-MnS/PG anode presents a remarkable capacity of 567 mAh/g at 0.1 A/g and outstanding rate performance (192 mAh/g at 10 A/g). Meanwhile, the as-assembled sodium-ion capacitor (SIC) can yield a high energy density of 119 Wh kg-1 and a maximum power density of 17500 W kg-1, with capacity retention of 77 % at 1 A/g after 5000 cycles. This work offers a promising strategy to develop MnS-based practical SICs with high energy and long lifespan, and paves the way for fabricating advanced anode materials.

11.
J Control Release ; 369: 88-100, 2024 May.
Article in English | MEDLINE | ID: mdl-38471640

ABSTRACT

Cell-free DNA (cfDNA) released from dead cells could be a player in some autoimmune disorders by activating Toll-like receptor 9 (TLR9) and inducing proinflammatory cytokines. Cationic nanoparticles (cNPs) address cfDNA clearance, yet challenges persist, including toxicity, low specificity and ineffectiveness against endocytosed cfDNA. This study introduced pH-sensitive cNPs, reducing off-target effects and binding cfDNA at inflammatory sites. This unique approach inhibits the TLR9 pathway, offering a novel strategy for inflammation modulation. Synthesized cNPs, with distinct cationic moieties, exhibit varied pKa values, enhancing cfDNA binding. Comprehensive studies elucidate the mechanism, demonstrating minimal extracellular binding, enhanced endosomal DNA binding, and optimal tumor necrosis factor-α suppression. In a traumatic brain injury mice model, pH-sensitive cNPs effectively suppress inflammatory cytokines, highlighting their potential in acute inflammation regulation.


Subject(s)
Cations , Cell-Free Nucleic Acids , Endosomes , Inflammation , Mice, Inbred C57BL , Nanoparticles , Toll-Like Receptor 9 , Animals , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Endosomes/metabolism , Inflammation/drug therapy , Toll-Like Receptor 9/metabolism , Male , Brain Injuries, Traumatic/drug therapy , Mice , Cytokines/metabolism , Humans , Tumor Necrosis Factor-alpha/metabolism
12.
Fitoterapia ; 175: 105924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537886

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Autophagy , Caenorhabditis elegans , Dendrobium , Disease Models, Animal , Plant Extracts , Proteostasis , Animals , Caenorhabditis elegans/drug effects , Alzheimer Disease/drug therapy , Dendrobium/chemistry , Proteostasis/drug effects , Autophagy/drug effects , Amyloid beta-Peptides/metabolism , Plant Extracts/pharmacology , Animals, Genetically Modified , tau Proteins/metabolism , Phenols/pharmacology , Phenols/isolation & purification , Flavanones/pharmacology , Drugs, Chinese Herbal/pharmacology , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
13.
Heliyon ; 10(6): e27646, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509951

ABSTRACT

Ageing is becoming an increasingly serious problem; therefore, there is an urgent need to find safe and effective anti-ageing drugs. Aims: To investigate the effects of Bazi Bushen capsule (BZBS) on the senescence of mesenchymal stem cells (MSCs) and explore its mechanism of action. Methods: Network pharmacology was used to predict the targets of BZBS in delaying senescence in MSCs. For in vitro studies, MSCs were treated with D-gal, BZBS, and NMN, and cell viability, cell senescence, stemness-related genes, and cell cycle were studied using cell counting kit-8 (CCK-8) assay, SA-ß-galactosidase (SA-ß-gal) staining, Quantitative Real-Time PCR (qPCR) and flow cytometry (FCM), respectively. Alkaline phosphatase (ALP), alizarin red, and oil red staining were used to determine the osteogenic and lipid differentiation abilities of MSCs. Finally, the expression of senescence-related genes and cyclin-related factors was detected by qPCR and western blotting. Results: Network pharmacological analysis suggested that BZBS delayed cell senescence by interfering in the cell cycle. Our in vitro studies suggested that BZBS could significantly increase cell viability (P < 0.01), decrease the quantity of ß-galactosidase+ cells (P < 0.01), downregulate p16 and p21 (P < 0.05, P < 0.01), improve adipogenic and osteogenic differentiation, and upregulate Nanog, OCT4 and SOX2 genes (P < 0.05, P < 0.01) in senescent MSCs. Moreover, BZBS significantly reduced the proportion of senescent MSCs in the G0/G1 phase (P < 0.01) and enhanced the expression of CDK4, Cyclin D1, and E2F1 (P < 0.05, P < 0.01, respectively). Upon treatment with HY-50767A, a CDK4 inhibitor, the upregulation of E2F1 was no longer observed in the BZBS group. Conclusions: BZBS can protect MSCs against D-gal-induced senescence, which may be associated with cell cycle regulation via the Cyclin D1/CDK4/E2F1 signalling pathway.

14.
Sensors (Basel) ; 24(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474986

ABSTRACT

This paper presents a low-power, high-gain integrator design that uses a cascode operational transconductance amplifier (OTA) with floating inverter-amplifier (FIA) assistance. Compared to a traditional cascode, the proposed integrator can achieve a gain of 80 dB, while reducing power consumption by 30%. Upon completing the analysis, the value of the FIA drive capacitor and clock scheme for the FIA-assisted OTA were obtained. To enhance the dynamic range (DR) and mitigate quantization noise, a tri-level quantizer was employed. The design of the feedback digital-to-analog converter (DAC) was simplified, as it does not use additional mismatch shaping techniques. A third-order, discrete-time delta-sigma modulator was designed and fabricated in a 0.18 µm complementary metal-oxide semiconductor (CMOS) process. It operated on a 1.8 V supply, consuming 221 µW with a 24 kHz bandwidth. The measured SNDR and DR were 90.9 dB and 95.3 dB, respectively.

15.
Zootaxa ; 5403(5): 571-586, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38480416

ABSTRACT

Angusta gen. n. is erected in the cicada tribe Leptopsaltriini Moulton, 1923, and one new species, Angusta fangtingyui sp. n., is described from China. The relationship of this new genus to related taxa is discussed based on morphology and the phylogeny of Angusta fangtingyui gen. & sp. n. and representative species of subtribes Puranina, Leptopsaltriina, Euterpnosiina and Leptosemiina, which was reconstructed based on the concatenated dataset of three genes (COI + EF-1 + ARD1). Accordingly, Angusta gen. n. is assigned to Euterpnosiina of Leptopsaltriini.


Subject(s)
Hemiptera , Animals , China
16.
Aquac Nutr ; 2024: 6973951, 2024.
Article in English | MEDLINE | ID: mdl-38404622

ABSTRACT

The providers of butyric acid, Clostridium butyricum (CB), sodium butyrate (SB), and tributyrin (TB), have been extensively studied as aquafeed additives in recent years. However, no comparative study has been reported on the probiotic effects of CB, SB, and TB as feed additives on sea cucumber (Apostichopus japonicus). A 63-day feeding trial was performed to assess the effects of dietary live cells of C. butyricum (CB group, the basal diet supplemented with 1% CB), sodium butyrate (SB group, the basal diet supplemented with 1% SB), and tributyrin (TB group, the basal diet supplemented with 1% TB) on the growth, non-specific immunity, and intestinal microbiota of A. japonicus with a basal diet group as the control. Results indicated that all three additives considerably increased A. japonicus growth, with dietary CB having the optimal growth-promoting effect. Of the seven non-specific enzyme parameters measured in coelomocytes of A. japonicus (i.e., the activities of phagocytosis, respiratory burst, superoxide dismutase, alkaline phosphatase, acid phosphatase, catalase, and lysozyme), dietary CB, SB, and TB considerably increased the activities of six, five, and six of them, respectively. The immune genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) expression in the mid-intestine tissues of A. japonicus was significantly increased by all three additives. The CB group had the highest expression of all four genes. Additionally, the relative expression of Aj-p105, Aj-p50, and Aj-lys genes was significantly up-regulated in the three additive groups after stimulation with inactivated Vibrio splendidus. Dietary CB enhanced the intestinal microbial diversity and richness in A. japonicus while dietary TB decreased them. Meanwhile, dietary CB, SB, and TB significantly enhanced the abundance of Firmicutes, unclassified_f_Rhodobacteraceae, and Proteobacteria, respectively, while dietary CB and SB reduced the abundance of Vibrio. Dietary CB and SB improved the stability of microbial ecosystem in the intestine of A. japonicus. In contrast, dietary TB appeared to have a negative effect on the stability of intestinal microbial ecosystem. All three additives improved the intestinal microbial functions associated with energy production and immunity regulation pathways, which may contribute directly to growth promotion and non-specific immunity enhancement in A. japonicus. Collectively, in terms of enhancing growth and non-specific immunity, as well as improving intestinal microbiota, dietary live cells of C. butyricum exhibited the most effective effects in A. japonicus.

17.
Opt Express ; 32(2): 1465-1477, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297697

ABSTRACT

High power and high brightness laser lighting puts forward new requirements for phosphor converters such as high luminous efficiency, high thermal conductivity and high saturation threshold due to the severe thermal effect. The structure design of phosphor converters is proposed as what we believe to be a novel strategy for less heat production and more heat conduction. In this work, the rod-shaped YAG:Ce phosphor ceramics (PCs) and disc-shaped YAG:Ce PCs as control group were fabricated by the gel casting and vacuum sintering, to comparatively study the luminescence performance for LD lighting, on the premise that the total number of transverse Ce3+ ions and the volume of samples from two comparison groups were same. All rod YAG:Ce PCs with low Ce3+ concentration exhibited the high luminous efficiency and better thermal stability than YAG:Ce discs with high Ce3+ concentration. Under the laser power density of 47.8 W/mm2, the luminous saturation was never observed in all rod-shaped YAG:Ce PCs. The high luminous efficacy of 245∼274 lm/W, CRI of 56.3∼59.5 and CCT of 4509∼4478 K were achieved. More importantly, due to the extremely low Ce3+ doping concentration (0.01 at%), rod-shaped ceramics based LDs devices showed the excellent thermal performance and their surface temperatures were even below 30.5 °C surprisingly under the laser power density of 20.3 W·mm-2 (2 W). These results indicate that the rod shape of phosphor converter is a promising structure engineering for high power laser lighting.

18.
Lasers Med Sci ; 39(1): 57, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329555

ABSTRACT

In order to investigate the postoperative efficacy, safety, stability, and predictability of SMILE surgery as a treatment for myopia, a comprehensive search was conducted in April 2023 across prominent databases, including PubMed, EMBASE, Web of Science, and Cochrane Library. The search aimed to select relevant studies of randomized controlled trials (RCTs) comparing clinical outcomes between SMILE and other corneal refractive surgeries for myopia. Upon conducting the initial search, a total of 324 records were retrieved from the aforementioned databases. These records were subjected to a meticulous selection process, adhering to predetermined inclusion criteria, resulting in 17 studies being ultimately included for analysis. By pooling the results of these studies, the comparison between SMILE surgery and alternative corneal refractive surgeries demonstrated similar outcomes in terms of efficacy, safety, stability, predictability, and higher-order aberrations (HOAs) concerning the correction of myopia. Furthermore, it was observed that the SMILE procedure exhibited a lesser impact on corneal sensation and corneal nerve density compared to other corneal refractive surgeries. Based on these findings, SMILE surgery may be considered as a treatment option with a slight superiority over conventional corneal surgery for myopia.


Subject(s)
Myopia , Surgical Wound , Humans , Myopia/surgery , Cornea , Postoperative Period
19.
Nat Commun ; 15(1): 1614, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388525

ABSTRACT

While Ru owns superior catalytic activity toward hydrogen oxidation reaction and cost advantages, the catalyst deactivation under high anodic potential range severely limits its potential to replace the Pt benchmark catalyst. Unveiling the deactivation mechanism of Ru and correspondingly developing protection strategies remain a great challenge. Herein, we develop atomic Pt-functioned Ru nanoparticles with excellent anti-deactivation feature and meanwhile employ advanced operando characterization tools to probe the underlying roles of Pt in the anti-deactivation. Our studies reveal the introduced Pt single atoms effectively prevent Ru from oxidative passivation and consequently preserve the interfacial water network for the critical H* oxidative release during catalysis. Clearly understanding the deactivation nature of Ru and Pt-induced anti-deactivation under atomic levels could provide valuable insights for rationally designing stable Ru-based catalysts for hydrogen oxidation reaction and beyond.

20.
Ecol Evol ; 14(2): e11077, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390001

ABSTRACT

Camponotus japonicus (Hymenoptera: Formicidae) is an omnivorous social insect which builds sizable colonies in sparse woodlands or cropland and spreads across multiple climatic zones in the Chinese mainland. This study aims to reveal the role of climate changes and geological events in driving the genetic structure of social insect populations by investigating the phylogenetics and historical demography of C. japonicus in the Chinese mainland. Phylogenetic analyses were conducted based on the mitochondria DNA dataset using MrBayes and IQ-TREE. We constructed a haplotype network, calculated analyses of molecular variance, estimated the divergence time, and reconstructed the maximum clade credibility tree. Mismatch distribution and Bayesian skyline plots were used to infer historical population fluctuations. Additionally, ecological niche modeling was employed to predict the potential distribution of the species during the present, mid-holocene, and last glacial maximum periods in the Chinese mainland. The phylogenetic tree and median-joining network analyses support the presence of four distinct lineages in C. japonicus. These lineages exhibit significant genetic differentiation and limited gene flow. The divergence among the four lineages began in the early Pleistocene, approximately 1.41 million years ago (Ma). Subsequently, the central lineage diverged from both the northern and southern lineages around 1.16 Ma, while the northern and southern lineages diverged from each other at approximately 1.07 Ma. Population expansion was observed in the southern, central, and northern lineages prior to the last glacial maximum, while the Yunnan-Sichuan lineage experienced a slight increase in population size in more recent times. The predicted distribution of the species corresponds well with the actual distribution. Furthermore, the current suitable habitat areas in northern Xinjiang, southern Tibet, and the southeast coastal regions have significantly decreased compared to the last glacial maximum and the mid-holocene periods. Our results suggest that climate oscillations and geological events play an important role in driving genetic patterns and differentiation of C. japonicus. Mountain barriers isolate populations from each other, hinder the flow of genes, and effectively prevent the spread of this species. But at the same time, it also formed refugia at low altitudes areas such as Qinling-Bashan Mountains and Yanshan-Taihang Mountains and provide suitable habitats during glaciation. This study provides a good model for understanding how complex climate changes and geological events affect population genetic differentiation of social insects in the Chinese mainland.

SELECTION OF CITATIONS
SEARCH DETAIL
...