Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.602
Filter
1.
Front Pharmacol ; 15: 1402763, 2024.
Article in English | MEDLINE | ID: mdl-38994201

ABSTRACT

Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.

2.
World J Clin Cases ; 12(19): 3815-3823, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994304

ABSTRACT

BACKGROUND: Intracerebral hemorrhage mainly occurs in middle-aged and elderly patients with hypertension, and surgery is currently the main treatment for hypertensive cerebral hemorrhage, but the bleeding caused by surgery will cause damage to the patient's nerve cells, resulting in cognitive and motor dysfunction, resulting in a decline in the patient's quality of life. AIM: To investigate associations between cerebral arterial blood flow and executive and cognitive functions in depressed patients after acute hypertensive cerebral hemorrhage. METHODS: Eighty-nine patients with depression after acute hypertensive cerebral hemorrhage who were admitted to our hospital between January 2019 and July 2021 were selected as the observation group, while 100 patients without depression who had acute hypertensive cerebral hemorrhage were selected as the control group. The attention span of the patients was assessed using the Paddle Pin Test while executive function was assessed using the Wisconsin Card Sorting Test (WCST) and cognitive function was assessed using the Montreal Cognitive Assessment Scale (MoCA). The Hamilton Depression Rating Scale (HAMD-24) was used to evaluate the severity of depression of involved patients. Cerebral arterial blood flow was measured in both groups. RESULTS: The MoCA score, net scores I, II, III, IV, and the total net score of the scratch test in the observation group were significantly lower than those in the control group (P < 0.05). Concurrently, the total number of responses, number of incorrect responses, number of persistent errors, and number of completed responses of the first classification in the WCST test were significantly higher in the observation group than those in the control group (P < 0.05). Blood flow in the basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery was significantly lower in the observation group than in the control group (P < 0.05). The basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery were positively correlated with the net and total net scores of each part of the Paddle Pin test and the MoCA score (P < 0.05), and negatively correlated with each part of the WCST test (P < 0.05). In the observation group, the post-treatment improvement was more prominent in the Paddle Pin test, WCST test, HAMD-24 score, and MoCA score compared with those in the pre-treatment period (P < 0.05). Blood flow in the basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery significantly improved in the observation group after treatment (P < 0.05). CONCLUSION: Impaired attention, and executive and cognitive functions are correlated with cerebral artery blood flow in patients with depression after acute hypertensive cerebral hemorrhage and warrant further study.

3.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001043

ABSTRACT

The properties of nanopipettes largely rely on the materials introduced onto their inner walls, which allow for a vast extension of their sensing capabilities. The challenge of simultaneously enhancing the sensitivity and selectivity of nanopipettes for pH sensing remains, hindering their practical applications. Herein, we report insulin-modified nanopipettes with excellent pH response performances, which were prepared by introducing insulin onto their inner walls via a two-step reaction involving silanization and amidation. The pH response intensity based on ion current rectification was significantly enhanced by approximately 4.29 times when utilizing insulin-modified nanopipettes compared with bare ones, demonstrating a linear response within the pH range of 2.50 to 7.80. In addition, insulin-modified nanopipettes featured good reversibility and selectivity. The modification processes were monitored using the I-V curves, and the relevant mechanisms were discussed. The effects of solution pH and insulin concentration on the modification results were investigated to achieve optimal insulin introduction. This study showed that the pH response behavior of nanopipettes can be greatly improved by introducing versatile molecules onto the inner walls, thereby contributing to the development and utilization of pH-responsive nanopipettes.


Subject(s)
Insulin , Hydrogen-Ion Concentration , Insulin/chemistry , Biosensing Techniques/methods , Ions/chemistry
4.
J Environ Sci (China) ; 146: 264-271, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969454

ABSTRACT

Slow release of emerging contaminants limits their accessibility from soil to pore water, constraining the treatment efficiency of physio-chemical treatment sites. DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites. Poor knowledge, however, exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid (PFOA) transport in porous media. Here, we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures. Variations of pseudo-second-order kinetic constants (kPSO) were correlated to the liquid viscosity variations (η) and elctroosmotic flow velocities (vEOF). Applying DC fields and elevated temperature significantly (>37%) decreased PFOA sorption to zeolite. A good correlation between η, vEOF, and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics. These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.


Subject(s)
Caprylates , Fluorocarbons , Zeolites , Caprylates/chemistry , Fluorocarbons/chemistry , Adsorption , Zeolites/chemistry , Kinetics , Models, Chemical
5.
Small ; : e2402655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949408

ABSTRACT

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

6.
Int J Biol Macromol ; 276(Pt 2): 133941, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032907

ABSTRACT

Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.

7.
Plant Physiol Biochem ; 214: 108922, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39038384

ABSTRACT

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.

8.
J Prosthodont Res ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019590

ABSTRACT

PATIENTS: An 18-year-old woman sought treatment for caries of the anterior teeth after completing orthodontic treatment. Direct composite resin restoration was chosen because the patient preferred a minimally invasive and cost-effective treatment whenever possible. Based on diagnostic wax-up, veneer-shaped indices for composite resin injection were designed to replicate and restore tooth defects rapidly and accurately. The overall esthetic result was excellent after a 1-year of follow-up. DISCUSSION: Direct freehand composite resin restorations are clinically challenging. The recently proposed 3D printing index for the composite resin injection technique is helpful for direct restoration but is challenging to remove. The veneer-shaped indices avoid the formation of an undercut in the direction of removing the index, making them easy to remove after finishing the restorations. CONCLUSIONS: Using veneer-shaped indices for composite resin injection enables rapid esthetic rehabilitation of labial tooth defects caused by caries. This approach reduces chairside time and operational difficulty while allowing for easy index removal after completing the restorations.

9.
Heliyon ; 10(11): e32413, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961898

ABSTRACT

The excellence of intelligent detection models has been widely recognized, but in terms of cross-domain scenes, they still face performance degradation and low accuracy. A multi-supervised Tri-Flow-YOLO model is proposed to improve the accuracy of objects with various scales under cross-domain conditions. Based on the full-supervised traditional detection branch of YOLOv5, another two mutually supporting task branches are designed intently. In brief, we add unsupervised adversarial classification training flow to the backend, to realize the feature alignment requirements and improve the cross-domain performance stability of the model. Meanwhile, a weakly-supervised object counting flow is proposed to improve the model's attention to all the objects and the detection ability is efficiently enforced. In addition, I-Mosaic and iCIOU are designed especially for small hard objects, enriching the positive samples during the training process. With the auxiliary of both improved strategies, the imbalance of positive and negative samples in the anchor-based model is relieved accordingly. The experimental results show that the improved Tri-Flow-YOLO model achieves 56.0 mAP in the Cityscapes→Foggy-Cityscapes task, and 49.8 mAP in the VOC→Clipart task.

10.
Heliyon ; 10(11): e32454, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961944

ABSTRACT

Background: Septic shock is a clinical syndrome characterized by the progression of sepsis to a severe stage. Elderly patients with urosepsis in the intensive care unit (ICU) are more likely to progress to septic shock. This study aimed to establish and validate a nomogram model for predicting the risk of progression to septic shock in elderly patients with urosepsis. Methods: We extracted data from the Medical Information Mart for Intensive Care (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). The MIMIC-IV dataset was split into a training set for model development and an internal validation set to assess model performance. Further external validation was performed using a distinct dataset sourced from the eICU-CRD. Predictors were screened using least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analyses. The evaluation of model performance included discrimination, calibration, and clinical usefulness. Results: The study demonstrated that the Glasgow Coma Scale (GCS), white blood count (WBC), platelet, blood urea nitrogen (BUN), calcium, albumin, congestive heart failure (CHF), and invasive ventilation were closely associated with septic shock in the training cohort. Nomogram prediction, utilizing eight parameters, demonstrated strong predictive accuracy with area under the curve (AUC) values of 0.809 (95 % CI 0.786-0.834), 0.794 (95 % CI 0.756-0.831), and 0.723 (95 % CI 0.647-0.801) in the training, internal validation, and external validation sets, respectively. Additionally, the nomogram demonstrated a promising calibration performance and significant clinical usefulness in both the training and validation sets. Conclusion: The constructed nomogram is a reliable and practical tool for predicting the risk of progression to septic shock in elderly patients with urosepsis. Its implementation in clinical practice may enhance the early identification of high-risk patients, facilitate timely and targeted interventions to mitigate the risk of septic shock, and improve patient outcomes.

11.
Eur J Clin Pharmacol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904798

ABSTRACT

OBJECTIVE: We aim to describe the population pharmacokinetics (PPK) of tacrolimus in Chinese pediatric patients under 4 years old after liver transplantation and to develop individualized tacrolimus dosing software. METHODS: A total of 663 blood concentrations from 85 patients aged 4.57 months to 3.97 years were collected in this study. PPK analysis was performed using a nonlinear mixed effects modeling approach with the software, Phoenix. Using C#, an individualized tacrolimus dosing software was created. The software was then used to predict the concentrations of another ten pediatric liver transplantation patients to verify the accuracy of said software. The predictive error (PE) and the absolute predictive error (APE) for each predicted time point were computed. RESULTS: A one-compartment model with first-order elimination best fitted the data. The apparent volume of distribution (V/F) and apparent clearance (CL/F) were 198.65 L and 2.41 L/h. Postoperative days (POD), total bilirubin (TBIL), and the use of voriconazole significantly influenced tacrolimus apparent clearance. The incorporation of an increasing number of actual blood drug concentrations into the prediction resulted in a decrease in both PE (72%, 17%, 7%) and APE (87%, 53%, 26%). CONCLUSIONS: A qualified PPK model of tacrolimus was developed in Chinese pediatric patients. The individualized tacrolimus dosing software could be used as a suitable tool for the personalization of tacrolimus dosing for pediatric patients after liver transplantation.

12.
Br J Anaesth ; 133(2): 296-304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839471

ABSTRACT

BACKGROUND: The comparative effectiveness of volatile anaesthesia and total intravenous anaesthesia (TIVA) in terms of patient outcomes after cardiac surgery remains a topic of debate. METHODS: Multicentre randomised trial in 16 tertiary hospitals in China. Adult patients undergoing elective cardiac surgery were randomised in a 1:1 ratio to receive volatile anaesthesia (sevoflurane or desflurane) or propofol-based TIVA. The primary outcome was a composite of predefined major complications during hospitalisation and mortality 30 days after surgery. RESULTS: Of the 3123 randomised patients, 3083 (98.7%; mean age 55 yr; 1419 [46.0%] women) were included in the modified intention-to-treat analysis. The composite primary outcome was met by a similar number of patients in both groups (volatile group: 517 of 1531 (33.8%) patients vs TIVA group: 515 of 1552 (33.2%) patients; relative risk 1.02 [0.92-1.12]; P=0.76; adjusted odds ratio 1.05 [0.90-1.22]; P=0.57). Secondary outcomes including 6-month and 1-yr mortality, duration of mechanical ventilation, length of ICU and hospital stay, and healthcare costs, were also similar for the two groups. CONCLUSIONS: Among adults undergoing cardiac surgery, we found no difference in the clinical effectiveness of volatile anaesthesia and propofol-based TIVA. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IOR-17013578).


Subject(s)
Anesthetics, Inhalation , Anesthetics, Intravenous , Cardiac Surgical Procedures , Desflurane , Postoperative Complications , Propofol , Humans , Propofol/adverse effects , Female , Male , Middle Aged , Cardiac Surgical Procedures/adverse effects , Cardiac Surgical Procedures/mortality , Anesthetics, Intravenous/adverse effects , Anesthetics, Inhalation/adverse effects , Aged , Postoperative Complications/mortality , Postoperative Complications/prevention & control , Adult , Sevoflurane/adverse effects , Anesthesia, Intravenous/methods , China/epidemiology , Length of Stay/statistics & numerical data , Anesthesia, Inhalation/methods , Anesthesia, Inhalation/adverse effects , Treatment Outcome
13.
Int J Biol Macromol ; 273(Pt 2): 133139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878929

ABSTRACT

The microencapsulation of polysaturated fatty acids by spray drying remains a challenge due to their susceptibility to oxidation. In this work, antioxidant Pickering emulsions were attempted as feeds to produce oxidation stable tuna oil microcapsules. The results indicated that the association between chitosan (CS) and ovalbumin (OVA) was a feasible way to fabricate antioxidant and wettable complexes and a high CS percentage favored these properties. The particles could yield tuna oil Pickering emulsions with enhanced oxidation stability through high-pressure homogenization, which were successfully spray dried to produce microcapsules with surface oil content of 8.84 % and microencapsulation efficiency of 76.65 %. The microcapsules exhibited significantly improved oxidation stability and their optimum peroxide values after storage at 50 °C, 85 % relative humidity, or natural light for 15 d were 48.67 %, 60.07 %, and 39.69 % respectively lower than the powder derived from the OVA-stabilized emulsion. Hence, Pickering emulsions stabilized by the CS/OVA polyelectrolyte complexes are potential in the production of oxidation stable polyunsaturated fatty acid microcapsules by spray drying.


Subject(s)
Capsules , Chitosan , Emulsions , Ovalbumin , Oxidation-Reduction , Spray Drying , Tuna , Chitosan/chemistry , Emulsions/chemistry , Ovalbumin/chemistry , Animals , Fish Oils/chemistry , Polyelectrolytes/chemistry , Antioxidants/chemistry , Particle Size
14.
ACS Appl Mater Interfaces ; 16(27): 35381-35389, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38943633

ABSTRACT

Building structures are exposed to direct sunlight for a long time, accumulating a large amount of low-grade thermal energy, which aggravates environmental pollution and energy consumption. Thermoelectric cement-based composites can realize the interconversion of thermal and electrical energy, showing great potential benefits in large-scale heat collection and energy conversion. Although a lot of exploration and research has been carried out on the thermoelectric properties of cement-based composites reinforced with carbon materials, the contribution of the characteristics of carbon materials, such as the graphitization degree, to the thermoelectric properties of cement-based composites is still unclear. In this article, the graphitization degree of expanded graphite (EG) was modulated by etching EG with an acid solution. The low graphitization degree improves the effective mass of carriers and aggravates the electron and phonon scattering at the interface of EG/cement-based composites. Low thermal conductivity was obtained while increasing the Seebeck coefficient of EG/cement-based composites. The power factor (17.1 µW m-1 K-2) and thermoelectric figure of merit (2.95 × 10-3) of the sample are increased by 18.6 times and 44.2 times, respectively, achieving the highest thermoelectric performance in cement-based composites reinforced with carbon materials. This study provides a direction for improving the thermoelectric properties of cement-based composites by structural regulation of carbon materials.

15.
Opt Express ; 32(11): 19265-19278, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859065

ABSTRACT

Crosstalk between adjacent views, lens aberrations, and low spatial resolution in light field displays limit the quality of 3D images. In the present study, we introduce a display performance optimization method for light field displays based on a neural network. The method pre-corrects the encoded image from a global perspective, which means that the encoded image is pre-corrected according to the light field display results. The display performance optimization network consists of two parts: the encoded image pre-correction network and the display network. The former realizes the pre-correction of the original encoded image (OEI), while the latter completes the modeling of the display unit and realizes the generation from the encoded image to the viewpoint images (VIs). The pre-corrected encoded image (PEI) obtained through the pre-correction network can reconstruct 3D images with higher quality. The VIs are accessible through the display network. Experimental results suggest that the proposed method can reduce the graininess of 3D images significantly without increasing the complexity of the system. It is promising for light field displays since it can provide improved 3D display performance.

16.
Lancet Oncol ; 25(7): 843-852, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852601

ABSTRACT

BACKGROUND: PD-1 blockade is highly efficacious for mismatch repair-deficient colorectal cancer in both metastatic and neoadjuvant settings. We aimed to explore the activity and safety of neoadjuvant therapy with PD-1 blockade plus an angiogenesis inhibitor and the feasibility of organ preservation in patients with locally advanced mismatch repair-deficient colorectal cancer. METHODS: We initiated a single-arm, open-label, phase 2 trial (NEOCAP) at Sun Yat-sen University Cancer Center and the Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China. Patients aged 18-75 years with untreated mismatch repair-deficient or microsatellite instability-high or POLE/POLD1-mutated locally advanced colorectal cancer (cT3 or N+ for rectal cancer, and T3 with invasion ≥5mm or T4, with or without N+ for colon cancer) and an Eastern Cooperative Oncology Group performance score of 0-1 were enrolled and given 200 mg camrelizumab intravenously on day 1 and 250 mg apatinib orally from day 1-14, every 3 weeks for 3 months followed by surgery or 6 months if patients did not have surgery. Patients who had a clinical complete response did not undergo surgery and proceeded with a watch-and-wait approach. The primary endpoint was the proportion of patients with a pathological or clinical complete response. Eligible enrolled patients who received at least one cycle of neoadjuvant treatment and had at least one tumour response assessment following the baseline assessment were included in the activity analysis, and patients who received at least one dose of study drug were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT04715633) and is ongoing. FINDINGS: Between Sept 29, 2020, and Dec 15, 2022, 53 patients were enrolled; one patient was excluded from the activity analysis because they were found to be mismatch repair-proficient and microsatellite-stable. 23 (44%) patients were female and 29 (56%) were male. The median follow-up was 16·4 (IQR 10·5-23·5) months. 28 (54%; 95% CI 35-68) patients had a clinical complete response and 24 of these patients were managed with a watch-and-wait approach, including 20 patients with colon cancer and multiple primary colorectal cancer. 23 (44%) of 52 patients underwent surgery for the primary tumour, and 14 (61%; 95% CI 39-80) had a pathological complete response. 38 (73%; 95% CI 59-84) of 52 patients had a complete response. Grade 3-5 adverse events occurred in 20 (38%) of 53 patients; the most common were increased aminotransferase (six [11%]), bowel obstruction (four [8%]), and hypertension (four [8%]). Drug-related serious adverse events occurred in six (11%) of 53 patients. One patient died from treatment-related immune-related hepatitis. INTERPRETATION: Neoadjuvant camrelizumab plus apatinib show promising antitumour activity in patients with locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer. Immune-related adverse events should be monitored with the utmost vigilance. Organ preservation seems promising not only in patients with rectal cancer, but also in those with colon cancer who have a clinical complete response. Longer follow-up is needed to assess the oncological outcomes of the watch-and-wait approach. FUNDING: The National Natural Science Foundation of China, Guangdong Basic and Applied Basic Research Foundation, and the Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , DNA Mismatch Repair , Microsatellite Instability , Neoadjuvant Therapy , Pyridines , Humans , Middle Aged , Female , Male , Neoadjuvant Therapy/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Pyridines/administration & dosage , Pyridines/adverse effects , Pyridines/therapeutic use , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Young Adult , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Adolescent
17.
Sci Total Environ ; 944: 173889, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38876335

ABSTRACT

The transport and retention of bacteria in porous media, such as aquifer, are governed by the solid-liquid interface characteristics and bacterial mobility. The secretion of extracellular polymeric substance (EPS) by bacteria modifies their surface property, and thereby has effects on their adhesion to surface. The role of EPS in bacterial mobility within saturated quartz sand media is uncertain, as both promoting and inhibitory effects have been reported, and underlying mechanisms remain unclear. In this study, the effects of EPS on bacterial transport behavior and possible underlying mechanism were investigated at 4 concentrations (0 mg L-1, 50 mg L-1, 200 mg L-1 and 1000 mg L-1) using laboratory simulation experiments in conjunction with Extend Derjaguin-Landau-Verweu-Overbeek (XDLVO) modeling. The results showed that EPS facilitated bacterial mobility at all tested concentrations. It could be partially explained by the increased energy barrier between bacterial cells and quartz sand surface in the presence of EPS. The XDLVO sphere-plate model predicted that EPS induced a higher electrostatic double layer (EDL) repulsive force, Lewis acid-base (AB) and steric stabilization (ST), as well as a lower Lifshitz-van der Waals (LW) attractive force. However, at the highest EPS concentration (1000 mg L-1), the promotion of EPS on bacterial mobility weakened as a result of lower repulsive interactions between cells, which was supported by observed enhanced bacterial aggregation. Consequently, the increased aggregation led to greater bio-colloidal straining and ripening in the sand column, weakening the positive impact of EPS on bacterial transport. These findings suggested that EPS exhibited concentration-dependent effects on bacterial surface properties and transport behavior and revealed non-intuitive dual effects of EPS on those processes.


Subject(s)
Bacteria , Extracellular Polymeric Substance Matrix , Porosity , Bacteria/metabolism , Surface Properties , Groundwater/chemistry , Bacterial Adhesion
18.
IEEE Trans Image Process ; 33: 4029-4043, 2024.
Article in English | MEDLINE | ID: mdl-38941204

ABSTRACT

In this study, we propose a modeling-based compression approach for dense/lenslet light field images captured by Plenoptic 2.0 with square microlenses. This method employs the 5-D Epanechnikov Kernel (5-D EK) and its associated theories. Owing to the limitations of modeling larger image block using the Epanechnikov Mixture Regression (EMR), a 5-D Epanechnikov Mixture-of-Experts using Gaussian Initialization (5-D EMoE-GI) is proposed. This approach outperforms 5-D Gaussian Mixture Regression (5-D GMR). The modeling aspect of our coding framework utilizes the entire EI and the 5D Adaptive Model Selection (5-D AMLS) algorithm. The experimental results demonstrate that the decoded rendered images produced by our method are perceptually superior, outperforming High Efficiency Video Coding (HEVC) and JPEG 2000 at a bit depth below 0.06bpp.

19.
Adv Sci (Weinh) ; 11(28): e2400790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38741381

ABSTRACT

Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.


Subject(s)
Autophagy , Disease Models, Animal , Lysosomes , Mice, Transgenic , Ossification, Heterotopic , Tendons , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Animals , Autophagy/physiology , Mice , Lysosomes/metabolism , Tendons/metabolism , Tendons/pathology , Tendons/physiopathology , Tenotomy/methods , Male , Tendon Injuries/physiopathology , Tendon Injuries/metabolism , Tendon Injuries/pathology , Mice, Inbred C57BL
20.
RSC Med Chem ; 15(5): 1640-1651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784471

ABSTRACT

A set of biotin-polyethylene glycol (PEG)-naphthalimide derivatives 4a-4h with dual targeting of ferroptosis and DNA were designed and optimized using docking simulation as antitumor agents. Docking simulation optimization results indicated that biotin-PEG4-piperazine-1,8-naphthalimide 4d should be the best candidate among these designed compounds 4a-4h, and therefore, we synthesized and evaluated it as a novel antitumor agent. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and MGC-803 and U251 xenograft models identified 4d as a good candidate antitumor agent with potent efficacy and safety profiles, compared with amonafide and temozolomide. The findings of the docking simulations, fluorescence intercalator displacement (FID), western blot, comet, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transmission electron microscopy, and BODIPY-581/591-C11, FerroOrange, and dihydroethidium (DHE) fluorescent probe assays revealed that 4d could induce DNA damage, affect DNA synthesis, and cause cell cycle arrest in the S phase in MGC-803 cells. Also, it could induce lipid peroxidation and thus lead to ferroptosis in MGC-803 cells, indicating that it mainly exerted antitumor effects through dual targeting of ferroptosis and DNA. These results suggested that it was feasible to design, optimize using docking simulation, and evaluate the potency and safety of biotin-PEG-1,8-naphthalimide as a antitumor agent with dual targeting of ferroptosis and DNA, based on a multi-target drug strategy.

SELECTION OF CITATIONS
SEARCH DETAIL