Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Front Cell Infect Microbiol ; 14: 1412478, 2024.
Article in English | MEDLINE | ID: mdl-38903942

ABSTRACT

In the post-COVID-19 era, the co-circulation of respiratory viruses, including influenza, SARS-CoV-2, and respiratory syncytial virus (RSV), continues to have significant health impacts and presents ongoing public health challenges. Vaccination remains the most effective measure for preventing viral infections. To address the concurrent circulation of these respiratory viruses, extensive efforts have been dedicated to the development of combined vaccines. These vaccines utilize a range of platforms, including mRNA-based vaccines, viral vector vaccines, and subunit vaccines, providing opportunities in addressing multiple pathogens at once. This review delves into the major advancements in the field of combined vaccine research, underscoring the strategic use of various platforms to tackle the simultaneous circulation of respiratory viruses effectively.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , SARS-CoV-2 , Humans , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccine Development , Viral Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Respiratory Syncytial Virus Vaccines/immunology , Vaccination , Animals
2.
Front Psychiatry ; 15: 1349989, 2024.
Article in English | MEDLINE | ID: mdl-38742128

ABSTRACT

Objective: Although extensive structural and functional abnormalities have been reported in schizophrenia, the gray matter volume (GMV) covariance of the amygdala remain unknown. The amygdala contains several subregions with different connection patterns and functions, but it is unclear whether the GMV covariance of these subregions are selectively affected in schizophrenia. Methods: To address this issue, we compared the GMV covariance of each amygdala subregion between 807 schizophrenia patients and 845 healthy controls from 11 centers. The amygdala was segmented into nine subregions using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co), corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We developed an operational combat harmonization model for 11 centers, subsequently employing a voxel-wise general linear model to investigate the differences in GMV covariance between schizophrenia patients and healthy controls across these subregions and the entire brain, while adjusting for age, sex and TIV. Results: Our findings revealed that five amygdala subregions of schizophrenia patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex, and so on (permutation test, P< 0.05, corrected). These findings could be replicated in most centers. Rigorous correlation analysis failed to identify relationships between the altered GMV covariance with positive and negative symptom scale, duration of illness, and antipsychotic medication measure. Conclusion: Our research is the first to discover selectively impaired GMV covariance patterns of amygdala subregion in a large multicenter sample size of patients with schizophrenia.

3.
Inflamm Res ; 73(4): 531-539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498178

ABSTRACT

Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.


Subject(s)
Citric Acid Cycle , Macrophages , Citric Acid Cycle/physiology , Macrophages/metabolism
4.
J Agric Food Chem ; 72(10): 5283-5292, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38429098

ABSTRACT

The increasing emergence of multidrug-resistant pathogens and development of biopreservatives in food industries has increased the demand of novel and safe antimicrobial agents. In this study, a marine bacterial strain Bacillus licheniformis M1 was isolated and exhibited obvious antimicrobial activities against foodborne pathogens, especially against methicillin-resistant Staphylococcus aureus. The antimicrobial agent was purified and identified as a novel antimicrobial peptide, which was designated as bacipeptin, and the corresponding mechanism was further investigated by electron microscopy observation and transcriptomic analysis with biochemical validation. The results showed that bacipeptin could reduce the virulence of methicillin-resistant Staphylococcus aureus and exerted its antimicrobial activity by interfering with histidine metabolism, inducing the accumulation of reactive oxygen species and down-regulating genes related to Na+/H+ antiporter and the cell wall, thus causing damage to the cell wall and membrane. Overall, our study provides a novel natural product against foodborne pathogens and discloses the corresponding action mechanism.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Antimicrobial Peptides , Anti-Infective Agents/pharmacology , Cell Wall , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
5.
Sci Total Environ ; 927: 172052, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554972

ABSTRACT

Earthquake prediction and disaster assessment in tectonically active regions require a continuous and complete regional seismic archive, which is commonly difficult to obtain, especially for prehistoric records. Here, high-resolution analysis of the sedimentary sequence from Lake Ebinur in Xinjiang revealed a detailed history of environment evolution since 32 ka ago. Both the Cl content and ultrafine proportion revealed the changing climate: the climate was relatively dry with low lake-water volumes from 32 to 12 ka, while the climate became warmer and wetter since 12 ka. In addition, eight earthquakes were identified by comprehensive analysis of grain size and geochemical element proxies, showing more than two seismic supercycles, with gaps of ∼10.4 ka; these gaps are much larger than those inferred previously (∼4-7 ka). Notably, these seismic events exhibited a pattern of mutual transmittance between the BoA and Jinghenan faults. Such fault interaction can occur in the Lake Ebinur area because it is dominated by weak lithosphere in which strain is easily accumulated and released; the interaction can also be attributed to the unique spatial distribution and immature nature of both faults. Combined with trenching investigations, our high-resolution analysis of lacustrine sediments can reveal a complete history of tectonic activity, which can efficiently serve regional earthquake prediction and disaster assessment.

6.
Brain Imaging Behav ; 18(3): 576-587, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38316730

ABSTRACT

Pain is a pervasive symptom in lung cancer patients during the onset of the disease. This study aims to investigate the connectivity disruption patterns of the whole-brain functional network in lung cancer patients with cancer pain (CP+). We constructed individual whole-brain, region of interest (ROI)-level functional connectivity (FC) networks for 50 CP+ patients, 34 lung cancer patients without pain-related complaints (CP-), and 31 matched healthy controls (HC). Then, a ROI-based FC analysis was used to determine the disruptions of FC among the three groups. The relationships between aberrant FCs and clinical parameters were also characterized. The ROI-based FC analysis demonstrated that hypo-connectivity was present both in CP+ and CP- patients compared to HC, which were particularly clustered in the somatomotor and ventral attention, frontoparietal control, and default mode modules. Notably, compared to CP- patients, CP+ patients had hyper-connectivity in several brain regions mainly distributed in the somatomotor and visual modules, suggesting these abnormal FC patterns may be significant for cancer pain. Moreover, CP+ patients also showed increased intramodular and intermodular connectivity strength of the functional network, which could be replicated in cancer stage IV and lung adenocarcinoma. Finally, abnormal FCs within the prefrontal cortex and somatomotor cortex were positively correlated with pain intensity and pain duration, respectively. These findings suggested that lung cancer patients with cancer pain had disrupted connectivity in the intrinsic brain functional network, which may be the underlying neuroimaging mechanisms.


Subject(s)
Brain , Cancer Pain , Lung Neoplasms , Magnetic Resonance Imaging , Neural Pathways , Humans , Lung Neoplasms/physiopathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/complications , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Brain/physiopathology , Brain/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Cancer Pain/physiopathology , Brain Mapping/methods , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Aged , Connectome/methods , Adult
7.
BMC Pregnancy Childbirth ; 24(1): 74, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254080

ABSTRACT

BACKGROUND: Overweight and obesity in mothers before pregnancy lead to overweight and obesity in their offspring, which is the main form of intergenerational transmission of overweight and obesity in early life. Many factors, especially non-genetic factors, may influence intergenerational transmission, but little prediction research has been conducted. Therefore, we analyzed the status of intergenerational transmission in maternal and infant overweight and obesity. Second, we explored the factors during the pregnancy that might affect the the intergenerational transmission; According to the two application scenarios of pregnancy screen and self-management, risk prediction models for pregnant women were carried out. METHODS: Based on a prospective birth cohort, a total of 908 mothers and offspring were followed up during early life. Follow-up visits were performed at the first trimester, second trimester, third trimester, delivery, 42 days after delivery, and 6 months and 12 months of age. The investigation methods included questionnaire survey, physical examination, biological sample collection and clinical data collection. In terms of risk prediction, univariate analysis was used to screen candidate predictors. Second, multivariable Cox proportional hazard regression models were used to determine the final selected predictors. Third, the corresponding histogram models were drawn, and then the 10-fold cross-validation methods were used for internal verification. RESULTS: Regarding intergenerational transmission of overweight and obesity between mothers and infants during pregnancy, the risk prediction model for pregnancy screen was constructed. The model established: h(t|X) = h0(t)exp.(- 0.95 × (Bachelor Degree or above) + 0.75 × (Fasting blood glucose in the second trimester) + 0.89 × (Blood pressure in the third trimester) + 0.80 × (Cholesterol in third trimester) + 0.55 × (Abdominal circumference in third trimester))., with good discrimination (AUC = 0.82) and calibration (Hosmer-Lemeshow2 = 4.17). The risk prediction model for self-management was constructed. The model established: h(t|X) = h0(t)exp. (0.98 × (Sedentary >18METs) + 0.88 × (Sleep index≥8) + 0.81 × (Unhealthy eating patterns Q3/Q4) + 0.90 × (Unhealthy eating patterns Q4/Q4) + 0.85 × (Depression)), with good discrimination (AUC = 0.75) and calibration (Hosmer-Lemeshow2 = 3.81). CONCLUSIONS: The risk predictions of intergenerational transmission of overweight and obesity between mothers and infants were performed for two populations and two application scenarios (pregnancy screening and home self-management). Further research needs to focus on infants and long-term risk prediction models.


Subject(s)
Obesity , Overweight , Pregnancy , Infant , Female , Humans , Overweight/epidemiology , Prospective Studies , Obesity/epidemiology , Mothers , Birth Cohort
8.
Chin J Nat Med ; 22(1): 4-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38278558

ABSTRACT

Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases , Humans , Drugs, Chinese Herbal/pharmacology , Liver Diseases/drug therapy , Antioxidants , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Medicine, Chinese Traditional
9.
Int J Biol Macromol ; 258(Pt 1): 128849, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113999

ABSTRACT

Maize is the largest crop in the world in terms of both planting area and total yield, and it plays a crucial role in ensuring global food and feed security. However, in recent years, with climate deterioration, environmental changes, and the scarcity of freshwater resources, drought has become a serious limiting factor for maize yield and quality. Drought stress-induced signals undergo a series of transmission processes to regulate the expression of specific genes, thereby affecting the drought tolerance of plants at the tissue, cellular, physiological and biochemical levels. Therefore, in this study we investigated the HD-Zip transcription factor gene Zmhdz9, and yeast activation experiments demonstrated that Zmhdz9 exhibited transcriptional activation activity. Under drought stress, high abscisic acid (ABA) and lignin levels significantly improved drought resistance in maize. Yeast two-hybrid, bimolecular fluorescence complementation (BIFC) and pull-down experiments showed that Zmhdz9 interacted with ZmWRKY120 and ZmTCP9, respectively. Overexpression of Zmhdz9 and gene editing of ZmWRKY120 or ZmTCP9 improved maize drought resistance, indicating their importance in the drought stress response. Furthermore, Zmhdz9 promoted the direct transcription of ZmWRKY120 in the W-box, activating elements of the ZmNCED1 promoter, which encodes a key enzyme in ABA biosynthesis. Additionally, Zmhdz9 promoted direct transcription of ZmTCP9 in the GGTCA motif, activating elements of the ZmKNOX8 promoter, which encodes a key enzyme in lignin synthesis. This study showed that the regulation of ABA and lignin by Zmhdz9 is essential for drought stress resistance in maize.


Subject(s)
Abscisic Acid , Transcription Factors , Abscisic Acid/metabolism , Transcription Factors/genetics , Drought Resistance , Zea mays/metabolism , Lignin/metabolism , Droughts , Saccharomyces cerevisiae/metabolism , Plant Proteins/chemistry , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plants, Genetically Modified/metabolism
12.
Mol Med ; 29(1): 132, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770820

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD involves multiple biological changes, including insulin resistance, oxidative stress, inflammation, as well as genetic and environmental factors. Liraglutide has been used to control blood sugar. But the impact of liraglutide on T2DM-associated NAFLD remains unclear. In this study, we investigated the impact and potential molecular mechanisms of inhibiting ferroptosis for liraglutide improves T2DM-associated NAFLD. METHODS: Mice were fed on high-fat-diet and injected with streptozotocin to mimic T2DM-associated NAFLD and gene expression in liver was analysed by RNA-seq. The fast blood glucose was measured during the period of liraglutide and ferrostatin-1 administration. Hematoxylin and eosin staining was used to evaluate the pathological changes in the liver. The occurrence of hepatic ferroptosis was measured by lipid peroxidation in vivo. The mechanism of liraglutide inhibition ferroptosis was investigated by in vitro cell culture. RESULTS: Liraglutide not only improved glucose metabolism, but also ameliorated tissue damage in the livers. Transcriptomic analysis indicated that liraglutide regulates lipid metabolism related signaling including AMPK and ACC. Furthermore, ferroptosis inhibitor rather than other cell death inhibitors rescued liver cell viability in the presence of high glucose. Mechanistically, liraglutide-induced activation of AMPK phosphorylated ACC, while AMPK inhibitor compound C blocked the liraglutide-mediated suppression of ferroptosis. Moreover, ferroptosis inhibitor restored liver function in T2DM mice in vivo. CONCLUSIONS: These findings indicate that liraglutide ameliorates the T2DM-associated NAFLD, which possibly through the activation of AMPK/ACC pathway and inhibition of ferroptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Ferroptosis , Non-alcoholic Fatty Liver Disease , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Liraglutide/pharmacology , Liraglutide/therapeutic use , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism
13.
Drug Des Devel Ther ; 17: 2401-2420, 2023.
Article in English | MEDLINE | ID: mdl-37609432

ABSTRACT

Introduction: Neuroinflammation is one of the major pathogeneses in Alzheimer's disease (AD) and mainly involves abnormal inflammatory activation of microglia by multiple pathological stimuli. The treatment of AD remains a major challenge due to the multifactorial characterization of AD and the inefficient ability of therapeutic drugs to permeate through the blood‒brain barrier (BBB). Accordingly, drug combination treatment and drug carrier delivery have become important therapeutic tools for the treatment of multifactorial diseases, especially AD. Methods: Inflammatory cytokine levels in microglia, including NO, TNF-α, IL-1ß, IL-4, and IL-10, were detected. The Morris water maze and object location task were used to investigate the learning and memory functions of APP/PS1 mice in different treatment groups. The number of neurons and plasticity of synapses were evaluated by immunofluorescence double labelling. Additionally, the ratio of ß-amyloid plaques and the number of activated microglia were evaluated by immunofluorescence staining. The concentrations of ß-amyloid plaques and inflammatory factors in the hippocampus were determined by ELISA. Microglia-derived exosomes (Exos) were extracted and purified by size exclusion chromatography. The distribution of exosomes and drugs was investigated in vitro and in vivo. Results: Compared to single drug interventions, the combination of Ber and Pal (Ber/Pal) modulated microglial inflammatory cytokine levels. Ber/Pal promoted the recovery of learning and memory impairment in APP/PS1 mice. Immunofluorescence staining indicated that Ber/Pal restored neurons, inhibited Aß plaque formation and microglial activation, and regulated the secretion of inflammatory factors. Exos promoted the accumulation of drugs in cells and tissues and improved the targeting of drugs across the BBB. Conclusion: Ber/Pal could offer a synergistic and more comprehensive therapeutic effect in AD. Additionally, the microglia-derived Exos-Ber/Pal delivery system promoted the targeting and permeation of drugs into the brain, suggesting a creative strategy for targeting AD therapy by regulating neuroinflammation in microglial cells.


Subject(s)
Alzheimer Disease , Berberine , Exosomes , Animals , Mice , Berberine/pharmacology , Alzheimer Disease/drug therapy , Neuroinflammatory Diseases , Plaque, Amyloid , Amyloid beta-Peptides , Cytokines
14.
Life Sci ; 331: 122026, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37607641

ABSTRACT

AIMS: The incidence of diabetic cognitive dysfunction is increasing year by year, and it has gradually become a research hot spot. Studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists can improve cognitive dysfunction in diabetic patients. This study focuses on whether small molecule GLP-1R agonists from traditional Chinese medicine (TCM) can improve the diabetic cognitive dysfunction. MATERIALS AND METHODS: The small molecules from TCM were screened by cell membrane chromatography (CMC) with GLP-1R-HEK293 cell membrane column. MTT assay, flow cytometry, immunofluorescence cytochemistry and other methods were used to determine the effects of mollugin on the apoptosis rate and reactive oxygen species (ROS) level of high glucose (HG)/hydrogen peroxide (H2O2) induced PC12 cells. Real-Time PCR was used to detect mRNA expression in mouse cerebral cortex. Water maze test was further used to confirm the effect of mollugin on cognitive dysfunction in T2DM mice. KEY FINDINGS: Mollugin bound to GLP-1R, promoted Ca2+ influx, increased insulin secretion and cAMP content in ß-TC-6 cells. Mollugin enhanced the cell viability, ameliorated apoptosis, reduced intracellular ROS levels in HG/H2O2-injured PC12 cells. Mollugin reduced the T2DM mice's escape latency, improved neuronal cell damage, decreased the expression of Pik3ca, Akt1 and Mapk1 mRNA in the cerebral cortex tissue. SIGNIFICANCE: The results suggest that mollugin could improve cognitive dysfunction in T2DM mice through activating GLP-1R/cAMP/PKA signal pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Humans , Rats , Mice , Animals , Glucagon-Like Peptide-1 Receptor/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Reactive Oxygen Species , HEK293 Cells , Hydrogen Peroxide , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy
15.
Mol Cell Endocrinol ; 577: 112029, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37495090

ABSTRACT

Diabetes mellitus is a metabolic disease that is characterized by elevated blood sugar. Although glucagon-like peptide-1 receptor agonists (GLP-1RA) lower blood glucose in a glucose-dependent manner, most of them are macromolecule polypeptides. Macromolecular peptides are relatively expensive and inconvenient compared with small molecules. Therefore, this study sought to identify the small molecules binding to GLP-1R via cell membrane chromatography (CMC), confirm their agonistic activity, and further study its beneficial effects in a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet and streptozotocin. We used CMC, calcium imaging and molecular docking techniques to screen and identify the potential small molecule Schisandrin B (Sch B), which exhibits a strong binding effect to GLP-1R, from the small molecule library of traditional Chinese medicine. Through in-vitro experiments, we found that Sch B stimulated insulin secretion in ß-TC-6 cells, while GLP-1R antagonist Exendin9-39, adenylate cyclase inhibitor SQ22536, and protein kinase A (PKA) inhibitor H89 could significantly inhibit the insulin secretion induced by Sch B. In vivo, Sch B significantly improved fasting blood glucose levels, intraperitoneal glucose tolerance test damage, and the status of pancreatic tissue damage, and reduced serum insulin levels, total cholesterol, triglyceride and low density lipoprotein in T2DM mice. These results indicate that Sch B alleviates T2DM by promoting insulin release through the GLP-1R/cAMP/PKA signaling pathway, suggesting that Sch B may be a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Animals , Insulin Secretion , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose , Molecular Docking Simulation , Receptors, Glucagon/metabolism , Insulin/metabolism , Peptides/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism
16.
Exp Neurol ; 365: 114414, 2023 07.
Article in English | MEDLINE | ID: mdl-37075971

ABSTRACT

Type 2 diabetes mellitus (T2DM) is strongly associated with an increased risk of developing cognitive dysfunction. Numerous studies have indicated that erythropoietin (EPO) has neurotrophic effects. Ferroptosis has been reported to be associated with diabetic cognitive dysfunction. However, the impact of EPO on T2DM-associated cognitive dysfunction and its protective mechanism remain unclear. To evaluate the effects of EPO on diabetes-associated cognitive dysfunction, we constructed a T2DM mouse model and found that EPO not only decreased fasting blood glucose but also ameliorated hippocampal damage in the brain. The Morris water maze test indicated that EPO improved cognitive impairments in diabetic mice. Moreover, a ferroptosis inhibitor improved cognitive dysfunction in mice with T2DM in vivo. Furthermore, a ferroptosis inhibitor, but not other cell death inhibitors, mostly rescued high-glucose damaged PC12 cell viability. EPO had a similar effect as the ferroptosis inhibitor, which increased cell viability in the presence of a ferroptosis inducer. In addition, EPO reduced lipid peroxidation, iron levels, and regulated ferroptosis-related expression of proteins in vivo and in vitro. These findings indicate that EPO ameliorates T2DM-associated cognitive dysfunction, which might be related to decreasing iron overload and inhibiting ferroptosis.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Erythropoietin , Ferroptosis , Iron Overload , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Erythropoietin/therapeutic use , Erythropoietin/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Epoetin Alfa , Iron Overload/complications , Iron Overload/drug therapy
17.
Cell Signal ; 106: 110614, 2023 06.
Article in English | MEDLINE | ID: mdl-36739954

ABSTRACT

Recent studies have shown that erythropoietin (EPO) is an effective neuroprotective and neurotrophic agent for neurological disorders, such as traumatic brain injury and Alzheimer's disease. However, the effectiveness of EPO administration against diabetic cognitive impairments has rarely been examined. In this study, we investigated the effects of EPO on streptozotocin (STZ)-induced male C57BL/6 J mice. Then, we sought to clarify the mechanisms of EPO-mediated neuroprotection in high-glucose (HG)-stimulated HT22 cells. In vivo, we found that STZ-induced diabetic mice showed impaired spatial learning and memory, which was alleviated by EPO treatment. EPO also significantly lowered elevated fasting blood glucose levels, improved pancreatic and hippocampal damage, and restored oxidative stress in the STZ-induced diabetic mice. In vitro, EPO markedly increased cell viability, restrained the expression of pro-apoptotic Bax, enhanced the expression of pro-caspase 3, anti-apoptotic Bcl-2, brain-derived neurotrophic factor (BDNF) and postsynaptic density 95 (PSD-95), and attenuated the upregulation of N-methyl-d-aspartic acid (NMDA) receptor subunits NR1, NR2A and NR2B in HG-induced HT22 cells. The protective effects of EPO was obviously abolished by treatment with an NMDA receptor agonist. Our findings revealed that EPO impedes hippocampal and synaptic damage and neuronal apoptosis by regulating BDNF and PSD-95 expression through NMDA receptors, thereby ameliorating cognitive impairments in mice with T1DM.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Erythropoietin , Mice , Male , Animals , Streptozocin/toxicity , Brain-Derived Neurotrophic Factor/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Mice, Inbred C57BL , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Cognition
18.
Plant Cell ; 35(6): 2006-2026, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36808553

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.


Subject(s)
Lotus , Mycorrhizae , Oryza , Humans , Lotus/genetics , Symbiosis/genetics , Biological Transport , Research Personnel , Plant Proteins/genetics , Plant Roots , Gene Expression Regulation, Plant/genetics
19.
Macromol Rapid Commun ; 44(8): e2200928, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36786588

ABSTRACT

In recent years, hydrogels have attracted extensive attention in smart sensing owing to their biocompatibility and high elasticity. However, it is still a challenge to develop hydrogels with excellent multiple responsiveness for smart wearable sensors. In this paper, a facile synthesis of carbon quantum dots (CQDs)-doped cross-linked chitosan quaternary/carboxymethylcellulose hydrogels (CCCDs) is presented. Designing of dual network hydrogels decorated with CQDs provides abundant crosslinking and improves the mechanical properties of the hydrogels. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor: 9.88), linearity (R2 : 0.97), stretchable ability (stress: 0.67 MPa; strain: 404%), good cyclicity, and durability. The luminescent properties are endowed by the CQDs further broaden the application of hydrogels for realizing flexible electronics. More interestingly, the strain sensor based on CCCDs hydrogel demonstrates photo responsiveness (ΔR/R0 ≈20%) and pH responsiveness (pH range ≈4-7) performance. CCCDs hydrogels can be used for gesture recognition and light sensing switch. As a proof-of-concept, a smart wearable sensor is designed for monitoring human activities and detecting pH variation in human sweat during exercise. This study reveals new possibilities for further applications in wearable health monitoring.


Subject(s)
Chitosan , Quantum Dots , Wearable Electronic Devices , Humans , Carbon , Hydrogels , Hydrogen-Ion Concentration , Electric Conductivity
20.
Sci Total Environ ; 868: 161662, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36681332

ABSTRACT

Lake sediments that widely distributed in the active and complicated fault zones have been recently showing great potential for paleoseismic reconstruction. However, flood events and human activities may make the seismic signal unrecognizable. In this study, high-resolution analyses of sedimentary structure, physical and chemical proxies, as well as absolutely radioactive dating were conducted on seven representative sediment cores from the depocenter, nearshore and inlet areas of Yangzong Lake, a typical fault lake in the Xiaojiang Fault zone, southeastern Tibetan Plateau (TP). These new data were calibrated by historical documents, suggesting that seismically induced mass-transport deposits (MTDs, i.e., turbidites) were massive and/or amalgamated (earthquake doublet), became fining and thickening towards the lake center (without changing lake morphology), and occasionally exhibited soft sediment deformation structures (SSDs, i.e., microfaults). These sediments were relatively poorly sorted and instantaneously deposited from slope failures within the lake. An extremely strong earthquake could cause coseismic subsidence of the lake basin and destruct the local hydrological system, resulting in exceptionally high Mn and total inorganic carbon (TIC) contents in the lake center. In contrast, flood deposits were thinner with horizontal beddings, had higher terrestrial organic matter (higher C/N ratios), and distributed locally in the lake inlet area. Human activities-induced sediments were inversely graded, poorly sorted and gradually deposited, had horizontal beddings and no erosive base, and exhibited high carbon, Pb and Zn contents and low C/N ratios. In addition, macroseismic investigations and statistical results from intensity prediction equations (IPEs) provided a conservative threshold of ∼8 Modified Mercalli Intensities (MMI) for triggering turbidites, and a ∼ 10 MMI for inducing coseismic subsidence and hydrological destruction. This study was among the first attempts to establish a quantitative lacustrine paleoseismograph in the southeastern TP, and the new results would greatly improve the valid assessment of geohazard risks.

SELECTION OF CITATIONS
SEARCH DETAIL