Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 116(1): 106-116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709223

ABSTRACT

The ICH E14/S7B Q&As highlighted the need for best practices concerning the design, execution, analysis, interpretation, and reporting of the in vivo non-rodent QT assay as a component of the integrated risk assessment to potentially support a TQT waiver or substitute. We conducted a dog telemetry study to assess the effects on QTc of six reference compounds (five positive and one negative) previously evaluated by Darpo et al. (2015) in humans. The sensitivity of the assay to detect QTc increases was determined, and exposure-response analysis was performed, as done in clinical practice. By-timepoint analysis showed QTc prolongation induced by moxifloxacin, dofetilide, dolasetron, ondansetron, and quinine within human relevant plasma exposures ranges. Moreover, a hysteresis was observed for quinine. As expected, levocetirizine showed no statistically significant effect on QTc across a range of exposure, well exceeding the therapeutic Cmax. Power analyses confirmed the study ability to detect statistically significant QTc changes of less than 10 milliseconds with 80% probability, even with a sample size as low as n = 4 animals. Finally, concentration-QTc modeling enabled to predict the minimal plasma concentration needed to detect a 10 milliseconds QTc prolongation, including for quinine. The comparison with clinical available data supported the relevance of dogs under these experimental conditions as a robust translational predictor of drug-induced QTc prolongation in humans as a key pillar of the integrated risk assessment.


Subject(s)
Electrocardiography , Long QT Syndrome , Dogs , Animals , Prospective Studies , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Electrocardiography/drug effects , Male , Female , Telemetry/methods , Risk Assessment/methods , Humans , Heart Rate/drug effects
2.
Pharmaceutics ; 16(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543190

ABSTRACT

Microphysiological systems (MPSs) are promising in vitro technologies for physiologically relevant predictions of the human absorption, distribution, metabolism, and excretion (ADME) properties of drug candidates. However, polydimethylsiloxane (PDMS), a common material used in MPSs, can both adsorb and absorb small molecules, thereby compromising experimental results. This study aimed to evaluate the feasibility of using the PDMS-based Emulate gut-on-chip to determine the first-pass intestinal drug clearance. In cell-free PDMS organ-chips, we assessed the loss of 17 drugs, among which testosterone was selected as a model compound for further study based on its substantial ad- and absorptions to organ chips and its extensive first-pass intestinal metabolism with well-characterized metabolites. A gut-on-chip model consisting of epithelial Caco-2 cells and primary human umbilical vein endothelial cells (HUVECs) was established. The barrier integrity of the model was tested with reference compounds and inhibition of drug efflux. Concentration-time profiles of testosterone were measured in cell-free organ chips and in gut-on-chip models. A method to deduce the metabolic clearance was provided. Our results demonstrate that metabolic clearance can be determined with PDMS-based MPSs despite substantial compound loss to the chip. Overall, this study offers a practical protocol to experimentally assess ADME properties in PDMS-based MPSs.

SELECTION OF CITATIONS
SEARCH DETAIL