Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Methods Mol Biol ; 2826: 141-150, 2024.
Article in English | MEDLINE | ID: mdl-39017891

ABSTRACT

Enzyme-Linked Immunosorbent Spot assay (ELISpot) is an immunoassay used to quantify individual protein-specific secreting cells. Proteins secreted by cells cultured in ELISpot plates (96- or 8-well format) bind to a specific antigen bound to a PVDF membrane at the bottom of the well. A detection antibody followed by an enzymatic reaction is used to identify secreted protein bound to the membrane coated antigen. This reaction results in distinct "spots" on the membrane corresponding to individual protein secreting cells. While the design is similar to an ELISA, ELISpots quantify the number and relative amount of secreted protein on a single cell level, as opposed to an ELISA that reveals the concentration of secreted proteins from a population of cells. The sensitivity, robustness, and diversity of different antigens used by ELISpots have led to an array of research applications such as measuring cytokines from cytotoxic T cells in cancer and quantifying antibody specificity from B cells following vaccinations. Improvements have been made to assays measuring cytokines and antibodies on a single cell basis, such as intracellular flow cytometry. Yet the ability of an ELISpot to evaluate the quantity and quality of protein secretion on an individual cell basis remains unmatched. Here, we describe the use of a modified ELISpot assay to detect antigen-specific memory B cells in the setting of a viral infection and autoimmunity.


Subject(s)
Autoimmunity , Enzyme-Linked Immunospot Assay , Memory B Cells , Enzyme-Linked Immunospot Assay/methods , Humans , Memory B Cells/immunology , Memory B Cells/metabolism , Antigens/immunology , Animals
2.
J Control Release ; 370: 570-582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734312

ABSTRACT

Current antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity. VaxMAP induced CD4+ T follicular helper (Tfh) cells and germinal center (GC) B cell responses in the lymph nodes similar to Alum. VaxMAP loaded with SARS-CoV-2 spike protein improved the magnitude, neutralization, and duration of anti-receptor binding domain antibodies compared to Alum vaccinated mice. A single injection of Influenza specific HA1-loaded-VaxMAP enhanced neutralizing antibodies and elicited greater protection against influenza virus challenge than HA1-loaded-Alum. Thus, VaxMAP is a platform that can be used to promote adaptive immune cell responses to generate more robust neutralizing antibodies, and better protection upon pathogen challenge.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Mice , COVID-19/prevention & control , COVID-19/immunology , Porosity , Female , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biocompatible Materials/chemistry , Mice, Inbred BALB C , B-Lymphocytes/immunology , SARS-CoV-2/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control
3.
bioRxiv ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38352398

ABSTRACT

Current antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity. VaxMAP induced CD4+ T follicular helper (Tfh) cells and germinal center (GC) B cell responses in the lymph nodes similar to Alum. VaxMAP loaded with SARS-CoV-2 spike protein improved the magnitude and duration of anti-receptor binding domain antibodies compared to Alum and mRNA-vaccinated mice. A single injection of Influenza specific HA1-loaded-VaxMAP enhanced neutralizing antibodies and elicited greater protection against influenza virus challenge than HA1-loaded-Alum. Thus, VaxMAP is a platform that can be used to promote adaptive immune cell responses to generate more robust neutralizing antibodies, and better protection upon pathogen challenge.

4.
Adv Sci (Weinh) ; 10(31): e2302248, 2023 11.
Article in English | MEDLINE | ID: mdl-37750461

ABSTRACT

New vaccine platforms that activate humoral immunity and generate neutralizing antibodies are required to combat emerging pathogens, including influenza virus. A slurry of antigen-loaded hydrogel microparticles that anneal to form a porous scaffold with high surface area for antigen uptake by infiltrating immune cells as the biomaterial degrades is demonstrated to enhance humoral immunity. Antigen-loaded-microgels elicited a robust cellular humoral immune response, with increased CD4+ T follicular helper (Tfh) cells and prolonged germinal center (GC) B cells comparable to the commonly used adjuvant, aluminum hydroxide (Alum). Increasing the weight fraction of polymer material led to increased material stiffness and antigen-specific antibody titers superior to Alum. Vaccinating mice with inactivated influenza virus loaded into this more highly cross-linked formulation elicited a strong antibody response and provided protection against a high dose viral challenge. By tuning physical and chemical properties, adjuvanticity can be enhanced leading to humoral immunity and protection against a pathogen, leveraging two different types of antigenic material: individual protein antigen and inactivated virus. The flexibility of the platform may enable design of new vaccines to enhance innate and adaptive immune cell programming to generate and tune high affinity antibodies, a promising approach to generate long-lasting immunity.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Animals , Mice , Humans , Immunity, Humoral , Porosity , Antibodies, Viral , Antigens
5.
J Immunol ; 210(12): 1861-1865, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37133336

ABSTRACT

Tbet+CD11c+ B cells, also known as age-associated B cells (ABCs), are pivotal contributors to humoral immunity following infection and in autoimmunity, yet their in vivo generation is incompletely understood. We used a mouse model of systemic acute lymphocytic choriomeningitis virus infection to examine the developmental requirements of ABCs that emerged in the spleen and liver. IL-21 signaling through STAT3 was indispensable for ABC development. In contrast, IFN-γ signaling through STAT1 was required for B cell activation and proliferation. Mice that underwent splenectomy or were deficient in lymphotoxin α generated hepatic ABCs despite the lack of secondary lymphoid organ contributions, suggesting that the liver supported de novo generation of these cells separately from their development in lymphoid organs. Thus, IFN-γ and IL-21 signaling have distinct, stage-specific roles in ABC differentiation, while the tissue microenvironment provides additional cues necessary for their development.


Subject(s)
Interleukins , Lymphocytic Choriomeningitis , Mice , Animals , Mice, Knockout , Cell Differentiation , Mice, Inbred C57BL
6.
Cell Rep ; 38(2): 110215, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021079

ABSTRACT

Macrophages are known to mediate anti-helminth responses, but it remains uncertain which subsets are involved or how macrophages actually kill helminths. Here, we show rapid monocyte recruitment to the lung after infection with the nematode parasite Nippostrongylus brasiliensis. In this inflamed tissue microenvironment, these monocytes differentiate into an alveolar macrophage (AM)-like phenotype, expressing both SiglecF and CD11c, surround invading parasitic larvae, and preferentially kill parasites in vitro. Monocyte-derived AMs (Mo-AMs) express type 2-associated markers and show a distinct remodeling of the chromatin landscape relative to tissue-derived AMs (TD-AMs). In particular, they express high amounts of arginase-1 (Arg1), which we demonstrate mediates helminth killing through L-arginine depletion. These studies indicate that recruited monocytes are selectively programmed in the pulmonary environment to express AM markers and an anti-helminth phenotype.


Subject(s)
Lung/immunology , Macrophages, Alveolar/immunology , Strongylida Infections/immunology , Animals , Arginase/metabolism , Cell Differentiation , Cytokines , Female , Lung/parasitology , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Nippostrongylus , Strongylida Infections/parasitology
7.
Immunity ; 55(2): 290-307.e5, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090581

ABSTRACT

Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.


Subject(s)
B-Lymphocytes/immunology , CD11 Antigens/metabolism , Lymphocyte Subsets/immunology , T Follicular Helper Cells/immunology , T-Box Domain Proteins/metabolism , Virus Diseases/immunology , Animals , Antibodies, Viral/metabolism , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Germinal Center/immunology , Alphainfluenzavirus/immunology , Integrins/metabolism , Lymphocyte Subsets/metabolism , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Spleen/immunology
8.
Sci Immunol ; 7(68): eabl5652, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-34914544

ABSTRACT

T follicular helper (TFH) cells are the conventional drivers of protective, germinal center (GC)­based antiviral antibody responses. However, loss of TFH cells and GCs has been observed in patients with severe COVID-19. As T cell­B cell interactions and immunoglobulin class switching still occur in these patients, noncanonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both TFH-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Although TFH-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. We found by epitope mapping and B cell receptor sequencing that TFH cells focused the B cell response, and therefore, in the absence of TFH cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Amino Acid Sequence , Animals , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Germinal Center/immunology , Humans , Lymphocyte Activation/immunology , Mice , T-Lymphocytes, Helper-Inducer
9.
Arthritis Rheumatol ; 73(3): 478-489, 2021 03.
Article in English | MEDLINE | ID: mdl-33512094

ABSTRACT

OBJECTIVE: To assess the role of STAT4 activation in driving pathogenic follicular helper T (Tfh) cell secretion of the cytokines interleukin-21 (IL-21) and interferon-γ (IFNγ) in murine and human lupus. METHODS: The effect of STAT4-dependent Tfh cell signaling on cytokine production and autoreactive B cell maturation was assessed temporally during the course of lupus in a murine model, with further assessment of Tfh cell gene transcription performed using RNA-Seq technology. STAT4-dependent signaling and cytokine production were also determined in circulating Tfh-like cells in patients with systemic lupus erythematosus (SLE), as compared to cells from healthy control subjects, and correlations with disease activity were assessed in the Tfh-like cells from SLE patients. RESULTS: IL-21- and IFNγ-coproducing Tfh cells expanded prior to the detection of potentially pathogenic IgG2c autoantibodies in lupus-prone mice. Tfh cells transcriptionally evolved during the course of disease with acquisition of a STAT4-dependent gene signature. Maintenance of Tfh cell cytokine synthesis was dependent upon STAT4 signaling, driven by type I IFNs. Circulating Tfh-like cells from patients with SLE also secreted IL-21 and IFNγ, with STAT4 phosphorylation enhanced by IFNß, in association with the extent of clinical disease activity. CONCLUSION: We identified a role for type I IFN signaling in driving STAT4 activation and production of IL-21 and IFNγ by Tfh cells in murine and human lupus. Enhanced STAT4 activation in Tfh cells may underlie pathogenic B cell responses in both murine and human lupus. These data indicate that STAT4 guides pathogenic cytokine and immunoglobulin production in SLE, demonstrating a potential therapeutic target to modulate autoimmunity.


Subject(s)
Autoantibodies/immunology , Cytokines/immunology , Interferon Type I/immunology , Lupus Erythematosus, Systemic/immunology , STAT4 Transcription Factor/immunology , T Follicular Helper Cells/immunology , Adult , Animals , Antibody Formation/immunology , Autoantibodies/biosynthesis , B-Lymphocytes/immunology , Case-Control Studies , Disease Models, Animal , Female , Humans , Immunoglobulins , Interferon-gamma/immunology , Interleukins/immunology , Male , Mice, Inbred MRL lpr , Middle Aged , RNA-Seq
10.
Nat Mater ; 20(4): 560-569, 2021 04.
Article in English | MEDLINE | ID: mdl-33168979

ABSTRACT

Microporous annealed particle (MAP) scaffolds are flowable, in situ crosslinked, microporous scaffolds composed of microgel building blocks and were previously shown to accelerate wound healing. To promote more extensive tissue ingrowth before scaffold degradation, we aimed to slow MAP degradation by switching the chirality of the crosslinking peptides from L- to D-amino acids. Unexpectedly, despite showing the predicted slower enzymatic degradation in vitro, D-peptide crosslinked MAP hydrogel (D-MAP) hastened material degradation in vivo and imparted significant tissue regeneration to healed cutaneous wounds, including increased tensile strength and hair neogenesis. MAP scaffolds recruit IL-33 type 2 myeloid cells, which is amplified in the presence of D-peptides. Remarkably, D-MAP elicited significant antigen-specific immunity against the D-chiral peptides, and an intact adaptive immune system was required for the hydrogel-induced skin regeneration. These findings demonstrate that the generation of an adaptive immune response from a biomaterial is sufficient to induce cutaneous regenerative healing despite faster scaffold degradation.


Subject(s)
Hydrogels/chemistry , Hydrogels/pharmacology , Regeneration/drug effects , Regeneration/immunology , Wound Healing/drug effects , Wound Healing/immunology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Female , Interleukin-33/metabolism , Mice , Porosity , Skin/drug effects , Skin/immunology , Tissue Scaffolds/chemistry
11.
Transfus Apher Sci ; 59(4): 102778, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32439490

ABSTRACT

BACKGROUND: People living with sickle cell disease (SCD) are prone to red blood cell (RBC) alloimmunization. We hypothesized that subjects with alloantibodies (responders) would have differences in circulating T-follicular helper (Tfh)-like cells compared to subjects without alloantibodies (non-responders). MATERIALS AND METHODS: Peripheral blood mononuclear cells were collected from 28 subjects, including those with SCD and controls. Circulating CD4 T-cell subsets were first evaluated at baseline. CD4 T-cell subsets were also evaluated after naïve CD4 T-cells were differentiated into Tfh-like cells following in vitro culture with CD3/CD28 beads, IL-7, IL-12, and Activin A. Transfusion and alloantibody histories were extracted from the electronic medical record. RESULTS: Non-responders had a lower percentage of CD45RA negative Tmemory cells than responders or controls (p<0.05). Notably, there were no differences in circulating Tfh-like cells between any group. However, naïve CD4 T-cells from subjects with SCD were more likely to express CXCR5 after in vitro culture than cells from controls. After culture, CXCR5 expressing cells from responders were more likely to express PD1 and ICOS (16.43 %, sd. 20.23) compared to non-responders (3.69 %, s.d. 3.09) or controls (2.78 %, s.d. 2.04). DISCUSSION: The tendency for naïve CD4 T-cells from responders to differentiate into Tfh-like cells after in vitro culture may suggest these cells are prepared to assist B-cells with antibody production regardless of antigen specificity. Further studies are needed, but it is possible that these results may explain why some responders form RBC alloantibodies with multiple specificities, in addition to RBC autoantibodies and HLA alloantibodies.


Subject(s)
Anemia, Sickle Cell/immunology , Erythrocyte Transfusion/methods , T-Lymphocyte Subsets/immunology , Transfusion Medicine/methods , Adult , Female , Humans , Male
12.
Science ; 365(6456)2019 08 30.
Article in English | MEDLINE | ID: mdl-31371561

ABSTRACT

Cross-linking of high-affinity immunoglobulin E (IgE) results in the life-threatening allergic reaction anaphylaxis. Yet the cellular mechanisms that induce B cells to produce IgE in response to allergens remain poorly understood. T follicular helper (TFH) cells direct the affinity and isotype of antibodies produced by B cells. Although TFH cell-derived interleukin-4 (IL-4) is necessary for IgE production, it is not sufficient. We report a rare population of IL-13-producing TFH cells present in mice and humans with IgE to allergens, but not when allergen-specific IgE was absent or only low-affinity. These "TFH13" cells have an unusual cytokine profile (IL-13hiIL-4hiIL-5hiIL-21lo) and coexpress the transcription factors BCL6 and GATA3. TFH13 cells are required for production of high- but not low-affinity IgE and subsequent allergen-induced anaphylaxis. Blocking TFH13 cells may represent an alternative therapeutic target to ameliorate anaphylaxis.


Subject(s)
Anaphylaxis/immunology , Immunoglobulin E/immunology , Interleukin-13/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , Animals , Child , GATA3 Transcription Factor/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Interleukin-13/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Proto-Oncogene Proteins c-bcl-6/metabolism
13.
Proc Natl Acad Sci U S A ; 116(6): 2200-2209, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30674681

ABSTRACT

Secondary hemophagocytic lymphohistiocytosis (sHLH) is a highly mortal complication associated with sepsis. In adults, it is often seen in the setting of infections, especially viral infections, but the mechanisms that underlie pathogenesis are unknown. sHLH is characterized by a hyperinflammatory state and the presence hemophagocytosis. We found that sequential challenging of mice with a nonlethal dose of viral toll-like receptor (TLR) agonist followed by a nonlethal dose of TLR4 agonist, but not other permutations, produced a highly lethal state that recapitulates many aspects of human HLH. We found that this hyperinflammatory response could be recapitulated in vitro in bone marrow-derived macrophages. RNA sequencing analyses revealed dramatic up-regulation of the red-pulp macrophage lineage-defining transcription factor SpiC and its associated transcriptional program, which was also present in bone marrow macrophages sorted from patients with sHLH. Transcriptional profiling also revealed a unique metabolic transcriptional profile in these macrophages, and immunometabolic phenotyping revealed impaired mitochondrial function and oxidative metabolism and a reliance on glycolytic metabolism. Subsequently, we show that therapeutic administration of the glycolysis inhibitor 2-deoxyglucose was sufficient to rescue animals from HLH. Together, these data identify a potential mechanism for the pathogenesis of sHLH and a potentially useful therapeutic strategy for its treatment.


Subject(s)
Communicable Diseases/complications , Lymphohistiocytosis, Hemophagocytic/etiology , Animals , Biomarkers , Blood Cell Count , Cell Line , Communicable Diseases/microbiology , Communicable Diseases/virology , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Metabolomics/methods , Mice , Mice, Knockout , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
14.
Nat Commun ; 9(1): 5037, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30487586

ABSTRACT

During chronic viral infection, the inflammatory function of CD4 T-cells becomes gradually attenuated. Concurrently, Th1 cells progressively acquire the capacity to secrete the cytokine IL-10, a potent suppressor of antiviral T cell responses. To determine the transcriptional changes that underlie this adaption process, we applied a single-cell RNA-sequencing approach and assessed the heterogeneity of IL-10-expressing CD4 T-cells during chronic infection. Here we show an IL-10-producing population with a robust Tfh-signature. Using IL-10 and IL-21 double-reporter mice, we further demonstrate that IL-10+IL-21+co-producing Tfh cells arise predominantly during chronic but not acute LCMV infection. Importantly, depletion of IL-10+IL-21+co-producing CD4 T-cells or deletion of Il10 specifically in Tfh cells results in impaired humoral immunity and viral control. Mechanistically, B cell-intrinsic IL-10 signaling is required for sustaining germinal center reactions. Thus, our findings elucidate a critical role for Tfh-derived IL-10 in promoting humoral immunity during persistent viral infection.


Subject(s)
Immunity, Humoral/physiology , Interleukin-10/metabolism , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunity, Humoral/genetics , Interleukin-10/genetics , Interleukins/genetics , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Sequence Analysis, RNA
16.
J Exp Med ; 215(1): 337-355, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29212666

ABSTRACT

Follicular helper T (Tfh) cells promote germinal center (GC) B cell survival and proliferation and guide their differentiation and immunoglobulin isotype switching by delivering contact-dependent and soluble factors, including IL-21, IL-4, IL-9, and IFN-γ. IL-21 and IFN-γ are coexpressed by Tfh cells during viral infections, but transcriptional regulation of these cytokines is not completely understood. In this study, we show that the T helper type 1 cell (Th1 cell) transcriptional regulators T-bet and STAT4 are coexpressed with Bcl6 in Tfh cells after acute viral infection, with a temporal decline in T-bet in the waning response. T-bet is important for Tfh cell production of IFN-γ, but not IL-21, and for a robust GC reaction. STAT4, phosphorylated in Tfh cells upon infection, is required for expression of T-bet and Bcl6 and for IFN-γ and IL-21. These data indicate that T-bet is expressed with Bcl6 in Tfh cells and is required alongside STAT4 to coordinate Tfh cell IL-21 and IFN-γ production and for promotion of the GC response after acute viral challenge.


Subject(s)
STAT4 Transcription Factor/metabolism , T-Box Domain Proteins/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Animals , Cell Differentiation/immunology , Cell Differentiation/physiology , Cell Line , Gene Expression Regulation/immunology , Gene Expression Regulation/physiology , Germinal Center/immunology , Germinal Center/metabolism , HEK293 Cells , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukins/immunology , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-6/immunology , Proto-Oncogene Proteins c-bcl-6/metabolism , STAT4 Transcription Factor/immunology , T-Box Domain Proteins/immunology , Th1 Cells
17.
Sci Immunol ; 2(16)2017 10 20.
Article in English | MEDLINE | ID: mdl-29054998

ABSTRACT

CD4+ follicular regulatory T (Tfr) cells suppress B cell responses through modulation of follicular helper T (Tfh) cells and germinal center (GC) development. We found that Tfr cells can also promote the GC response through provision of interleukin-10 (IL-10) after acute infection with lymphocytic choriomeningitis virus (LCMV). Sensing of IL-10 by B cells was necessary for optimal development of the GC response. GC B cells formed in the absence of Treg cell-derived IL-10 displayed an altered dark zone state and decreased expression of the transcription factor Forkhead box protein 1 (FOXO1). IL-10 promoted nuclear translocation of FOXO1 in activated B cells. These data indicate that Tfr cells play a multifaceted role in the fine-tuning of the GC response and identify IL-10 as an important mediator by which Tfr cells support the GC reaction.


Subject(s)
Arenaviridae Infections/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Interleukin-10/immunology , T-Lymphocytes, Regulatory/immunology , Animals , B-Lymphocytes/physiology , Cell Differentiation , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Germinal Center/physiology , Interleukin-10/metabolism , Lymphocyte Activation , Lymphocytic choriomeningitis virus/immunology , Mice , Sequence Analysis, RNA , T-Lymphocytes, Regulatory/physiology
18.
Science ; 356(6342): 1072-1076, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28495875

ABSTRACT

Tissue repair is a subset of a broad repertoire of interleukin-4 (IL-4)- and IL-13-dependent host responses during helminth infection. Here we show that IL-4 or IL-13 alone was not sufficient, but IL-4 or IL-13 together with apoptotic cells induced the tissue repair program in macrophages. Genetic ablation of sensors of apoptotic cells impaired the proliferation of tissue-resident macrophages and the induction of anti-inflammatory and tissue repair genes in the lungs after helminth infection or in the gut after induction of colitis. By contrast, the recognition of apoptotic cells was dispensable for cytokine-dependent induction of pattern recognition receptor, cell adhesion, or chemotaxis genes in macrophages. Detection of apoptotic cells can therefore spatially compartmentalize or prevent premature or ectopic activity of pleiotropic, soluble cytokines such as IL-4 or IL-13.


Subject(s)
Interleukin-13/immunology , Interleukin-4/immunology , Macrophages/immunology , Nippostrongylus/physiology , Regeneration , Animals , Apoptosis , Inflammation/chemically induced , Inflammation/pathology , Mice , Strongylida Infections/immunology , Thioglycolates
19.
Nat Immunol ; 17(10): 1197-1205, 2016 10.
Article in English | MEDLINE | ID: mdl-27573866

ABSTRACT

Germinal center (GC) B cells undergo affinity selection, which depends on interactions with CD4(+) follicular helper T cells (TFH cells). We found that TFH cells progressed through transcriptionally and functionally distinct stages and provided differential signals for GC regulation. They initially localized proximally to mutating B cells, secreted interleukin 21 (IL-21), induced expression of the transcription factor Bcl-6 and selected high-affinity B cell clones. As the GC response evolved, TFH cells extinguished IL-21 production and switched to IL-4 production, showed robust expression of the co-stimulatory molecule CD40L, and promoted the development of antibody-secreting B cells via upregulation of the transcription factor Blimp-1. Thus, TFH cells in the B cell follicle progressively differentiate through stages of localization, cytokine production and surface ligand expression to 'fine tune' the GC reaction.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Interleukins/metabolism , Nippostrongylus/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antibody Affinity , CD4 Antigens/metabolism , Cell Communication , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Humans , Interleukin-4/metabolism , Interleukins/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation/genetics , Positive Regulatory Domain I-Binding Factor 1 , Strongylida Infections , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Science ; 352(6281): 99-103, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27034374

ABSTRACT

Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses.


Subject(s)
Adaptive Immunity/genetics , Asthma/immunology , Host-Parasite Interactions/immunology , Immunity, Innate/genetics , Receptor Protein-Tyrosine Kinases/physiology , Animals , Asthma/genetics , Blood Proteins/antagonists & inhibitors , Blood Proteins/genetics , Blood Proteins/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Gene Knockout Techniques , Host-Parasite Interactions/genetics , Humans , Interleukin-4/immunology , Interleukin-4/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nippostrongylus/immunology , Protein S , Pyroglyphidae/immunology , Receptor Protein-Tyrosine Kinases/genetics , Strongylida Infections/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL