Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000579

ABSTRACT

Botulinum neurotoxins are some of the most potent natural toxins known; they cause flaccid paralysis by inhibiting synaptic vesicle release. Some serotypes, notably serotype A and B, can cause persistent paralysis lasting for several months. Because of their potency and persistence, botulinum neurotoxins are now used to manage several clinical conditions, and there is interest in expanding their clinical applications using engineered toxins with novel substrate specificities. It will also be beneficial to engineer toxins with tunable persistence. We have investigated the potential use of small-molecule proteolysis-targeting chimeras (PROTACs) to vary the persistence of modified recombinant botulinum neurotoxins. We also describe a complementary approach that has potential relevance for botulism treatment. This second approach uses a camelid heavy chain antibody directed against botulinum neurotoxin that is modified to bind the PROTAC. These strategies provide proof of principle for the use of two different approaches to fine tune the persistence of botulinum neurotoxins by selectively targeting their catalytic light chains for proteasomal degradation.


Subject(s)
Botulinum Toxins , Proteolysis , Botulinum Toxins/chemistry , Botulinum Toxins/metabolism , Humans , Animals , Proteasome Endopeptidase Complex/metabolism , Proteolysis Targeting Chimera
2.
J Biol Chem ; 299(12): 105346, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838170

ABSTRACT

Nsp3s are the largest nonstructural proteins of coronaviruses. These transmembrane proteins include papain-like proteases (PLpro) that play essential roles in cleaving viral polyproteins into their mature units. The PLpro of SARS-CoV viruses also have deubiquitinating and deISGylating activities. As Nsp3 is an endoplasmic reticulum (ER)-localized protein, we asked if the deubiquitinating activity of SARS-CoV-2 PLpro affects proteins that are substrates for ER-associated degradation (ERAD). Using full-length Nsp3 as well as a truncated transmembrane form we interrogated, by coexpression, three potential ERAD substrates, all of which play roles in regulating lipid biosynthesis. Transmembrane PLpro increases the level of INSIG-1 and decreases its ubiquitination. However, different effects were seen with SREBP-1 and SREBP-2. Transmembrane PLpro cleaves SREBP-1 at three sites, including two noncanonical sites in the N-terminal half of the protein, resulting in a decrease in precursors of the active transcription factor. Conversely, cleavage of SREBP-2 occurs at a single canonical site that disrupts a C-terminal degron, resulting in increased SREBP-2 levels. When this site is mutated and the degron can no longer be interrupted, SREBP-2 is still stabilized by transmembrane PLpro, which correlates with a decrease in SREBP-2 ubiquitination. All of these observations are dependent on PLpro catalytic activity. Our findings demonstrate that, when anchored to the ER membrane, SARS-CoV-2 Nsp3 PLpro can function as a deubiquitinating enzyme to stabilize ERAD substrates. Additionally, SARS-CoV-2 Nsp3 PLpro can cleave ER-resident proteins, including at sites that could escape analyses based on the established consensus sequence.


Subject(s)
COVID-19 , Endoplasmic Reticulum , Peptide Hydrolases , SARS-CoV-2 , Humans , COVID-19/virology , Endoplasmic Reticulum/enzymology , Peptide Hydrolases/metabolism , SARS-CoV-2/enzymology , Sterol Regulatory Element Binding Protein 1/metabolism , Ubiquitin/metabolism , HeLa Cells , HEK293 Cells , Proteolysis , Protein Stability , Sterol Regulatory Element Binding Protein 2/metabolism
3.
J Biol Chem ; 299(8): 104937, 2023 08.
Article in English | MEDLINE | ID: mdl-37331598

ABSTRACT

Mitochondria are essential organelles whose proteome is well protected by regulated protein degradation and quality control. While the ubiquitin-proteasome system can monitor mitochondrial proteins that reside at the mitochondrial outer membrane or are not successfully imported, resident proteases generally act on proteins within mitochondria. Herein, we assess the degradative pathways for mutant forms of three mitochondrial matrix proteins (mas1-1HA, mas2-11HA, and tim44-8HA) in Saccharomyces cerevisiae. The degradation of these proteins is strongly impaired by loss of either the matrix AAA-ATPase (m-AAA) (Afg3p/Yta12p) or Lon (Pim1p) protease. We determine that these mutant proteins are all bona fide Pim1p substrates whose degradation is also blocked in respiratory-deficient "petite" yeast cells, such as in cells lacking m-AAA protease subunits. In contrast, matrix proteins that are substrates of the m-AAA protease are not affected by loss of respiration. The failure to efficiently remove Pim1p substrates in petite cells has no evident relationship to Pim1p maturation, localization, or assembly. However, Pim1p's autoproteolysis is intact, and its overexpression restores substrate degradation, indicating that Pim1p retains some functionality in petite cells. Interestingly, chemical perturbation of mitochondria with oligomycin similarly prevents degradation of Pim1p substrates. Our results demonstrate that Pim1p activity is highly sensitive to mitochondrial perturbations such as loss of respiration or drug treatment in a manner that we do not observe with other proteases.


Subject(s)
ATP-Dependent Proteases , Mitochondria , Saccharomyces cerevisiae Proteins , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cell Respiration
4.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35639484

ABSTRACT

Women of African ancestry suffer higher rates of breast cancer mortality compared with all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated E3 ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER+ and ER- tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer insights into our understanding of racial differences in breast cancer outcomes.


Subject(s)
Breast Neoplasms , Ubiquitin-Protein Ligases , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Endoplasmic Reticulum/metabolism , Female , Humans , Retrospective Studies , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
5.
PLoS Biol ; 19(12): e3001474, 2021 12.
Article in English | MEDLINE | ID: mdl-34879065

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/genetics , Membrane Proteins/physiology , Ubiquitin-Conjugating Enzymes/physiology , Amino Acid Sequence/genetics , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Protein Binding/genetics , Protein Domains/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitination
6.
Nat Commun ; 11(1): 2094, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350255

ABSTRACT

Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2-ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2-ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage.


Subject(s)
DNA Damage , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , RING Finger Domains , Amino Acid Sequence , Cell Line, Tumor , Humans , Models, Molecular , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Multimerization , Structure-Activity Relationship , Ubiquitin/metabolism
7.
Elife ; 92020 03 02.
Article in English | MEDLINE | ID: mdl-32118579

ABSTRACT

Maintaining the essential functions of mitochondria requires mechanisms to recognize and remove misfolded proteins. However, quality control (QC) pathways for misfolded mitochondrial proteins remain poorly defined. Here, we establish temperature-sensitive (ts-) peripheral mitochondrial outer membrane (MOM) proteins as novel model QC substrates in Saccharomyces cerevisiae. The ts- proteins sen2-1HAts and sam35-2HAts are degraded from the MOM by the ubiquitin-proteasome system. Ubiquitination of sen2-1HAts is mediated by the ubiquitin ligase (E3) Ubr1, while sam35-2HAts is ubiquitinated primarily by San1. Mitochondria-associated degradation (MAD) of both substrates requires the SSA family of Hsp70s and the Hsp40 Sis1, providing the first evidence for chaperone involvement in MAD. In addition to a role for the Cdc48-Npl4-Ufd1 AAA-ATPase complex, Doa1 and a mitochondrial pool of the transmembrane Cdc48 adaptor, Ubx2, are implicated in their degradation. This study reveals a unique QC pathway comprised of a combination of cytosolic and mitochondrial factors that distinguish it from other cellular QC pathways.


Proteins are molecules that need to fold into the right shape to do their job. If proteins lose that shape, not only do they stop working but they risk clumping together and becoming toxic, potentially leading to disease. Fortunately, the cell has quality control systems that normally detect and remove misfolded proteins before they can cause damage to the cell. First, sets of proteins known as chaperones recognize the misfolded proteins, and then another class of proteins attaches a molecular tag, known as ubiquitin, to the misshapen proteins. When several ubiquitin tags are attached to a protein, forming chains of ubiquitin, it is transported to a large molecular machine within the cell called the proteasome. The proteasome unravels the protein and breaks it down into its constituent building blocks, which can then be used to create new proteins. Proteins are found throughout the different compartments of the cell and quality control processes have been well-studied in some parts of the cell but not others. Metzger et al. have now revealed how the process works on the surface of mitochondria, the compartment that provides the cell with most of its energy. To do this, they used baker's yeast, a model laboratory organism that shares many fundamental properties with animal cells, but which is easier to manipulate genetically. The quality control process was studied using two mitochondrial proteins that had been mutated to make them sensitive to changes in temperature. This meant that, when the temperature increased from 25°C to 37°C, these proteins would begin to unravel and trigger the clean-up operation. This approach has been used previously to understand the quality control processes in other parts of the cell. By removing different quality control machinery in turn from the yeast cells, Metzger et al. could detect which were necessary for the process on mitochondria. This showed that there were many similarities with how this process happen in other parts of the cell but that the precise combination of chaperones and enzymes involved was distinct. Furthermore, when the proteasome was not working, the misfolded proteins remained on the mitochondria, showing that they are not transported to other parts of the cell to be broken down. In the future, understanding this process could help to find potential drug targets for mitochondrial diseases. The next steps will be to see how well these findings apply to human and other mammalian cells.


Subject(s)
Intracellular Membranes/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cytosol/metabolism , Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Transport , Proteolysis , Saccharomyces cerevisiae/metabolism , Temperature , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
8.
Pharmacol Rev ; 72(2): 380-413, 2020 04.
Article in English | MEDLINE | ID: mdl-32107274

ABSTRACT

Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.


Subject(s)
Protein Engineering/methods , Ubiquitins/metabolism , Animals , Deubiquitinating Enzymes/metabolism , Humans , Ubiquitination
9.
Nat Commun ; 11(1): 333, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949145

ABSTRACT

Cutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival. We identify a melanoblast gene, KDELR3, whose loss impairs experimental metastasis. In contrast, KDELR1 deficiency enhances metastasis, providing the first example of different disease etiologies within the KDELR-family of retrograde transporters. We show that KDELR3 regulates the metastasis suppressor, KAI1, and report an interaction with the E3 ubiquitin-protein ligase gp78, a regulator of KAI1 degradation. Our work demonstrates that the melanoblast transcriptome can be mined to uncover targetable pathways for melanoma therapy.


Subject(s)
Gene Expression Profiling , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcriptome , Animals , Cell Line, Tumor , Endoplasmic Reticulum , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kangai-1 Protein/genetics , Kangai-1 Protein/metabolism , Lung/pathology , Melanocytes/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/genetics , Neoplasms, Second Primary/pathology , Phenotype , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Skin Neoplasms/pathology , Ubiquitin-Protein Ligases/metabolism , Melanoma, Cutaneous Malignant
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 8): 552-560, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31397327

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality-control pathway in eukaryotes in which misfolded ER proteins are polyubiquitylated, extracted and ultimately degraded by the proteasome. This process involves ER membrane-embedded ubiquitin E2 and E3 enzymes, as well as a soluble E2 enzyme (Ubc7 in Saccharomyces cerevisiae and UBE2G2 in mammals). E2-binding regions (E2BRs) that recruit these soluble ERAD E2s to the ER have been identified in humans and S. cerevisiae, and structures of E2-E2BR complexes from both species have been determined. In addition to sequence and structural differences between the human and S. cerevisiae E2BRs, the binding of E2BRs also elicits different biochemical outcomes with respect to E2 charging by E1 and E2 discharge. Here, the Schizosaccharomyces pombe E2BR was identified and purified with Ubc7 to resolve a 1.7 Šresolution co-crystal structure of the E2BR in complex with Ubc7. The S. pombe E2BR binds to the back side of the E2 as an α-helix and, while differences exist, it exhibits greater similarity to the human E2BR. Structure-based sequence alignments reveal differences and conserved elements among these species. Structural comparisons and biochemistry reveal that the S. pombe E2BR presents a steric impediment to E1 binding and inhibits E1-mediated charging, respectively.


Subject(s)
Crystallography, X-Ray/methods , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Endoplasmic Reticulum/metabolism , Models, Molecular , Protein Conformation , Ubiquitin/chemistry
11.
FASEB J ; 33(1): 1235-1247, 2019 01.
Article in English | MEDLINE | ID: mdl-30113882

ABSTRACT

Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.


Subject(s)
Cell Cycle , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Catalysis , Cell Line , Humans , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Proteolysis , Substrate Specificity , Ubiquitin/metabolism , Ubiquitination
12.
G3 (Bethesda) ; 7(11): 3731-3743, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28928274

ABSTRACT

Protein degradation by the ubiquitin-proteasome system is essential to many processes. We sought to assess its involvement in the turnover of mitochondrial proteins in Saccharomyces cerevisiae We find that deletion of a specific ubiquitin ligase (E3), Psh1p, increases the abundance of a temperature-sensitive mitochondrial protein, mia40-4pHA, when it is expressed from a centromeric plasmid. Deletion of Psh1p unexpectedly elevates the levels of other proteins expressed from centromeric plasmids. Loss of Psh1p does not increase the rate of turnover of mia40-4pHA, affect total protein synthesis, or increase the protein levels of chromosomal genes. Instead, psh1Δ appears to increase the incidence of missegregation of centromeric plasmids relative to their normal 1:1 segregation. After generations of growth with selection for the plasmid, ongoing missegregation would lead to elevated plasmid DNA, mRNA, and protein, all of which we observe in psh1Δ cells. The only known substrate of Psh1p is the centromeric histone H3 variant Cse4p, which is targeted for proteasomal degradation after ubiquitination by Psh1p However, Cse4p overexpression alone does not phenocopy psh1Δ in increasing plasmid DNA and protein levels. Instead, elevation of Cse4p leads to an apparent increase in 1:0 plasmid segregation events. Further, 2 µm high-copy yeast plasmids also missegregate in psh1Δ, but not when Cse4p alone is overexpressed. These findings demonstrate that Psh1p is required for the faithful inheritance of both centromeric and 2 µm plasmids. Moreover, the effects that loss of Psh1p has on plasmid segregation cannot be accounted for by increased levels of Cse4p.


Subject(s)
Extrachromosomal Inheritance , Peptide Elongation Factors/metabolism , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Ubiquitin-Protein Ligases/metabolism , Centromere/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Peptide Elongation Factors/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
13.
PLoS One ; 12(9): e0185089, 2017.
Article in English | MEDLINE | ID: mdl-28926611

ABSTRACT

Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.


Subject(s)
Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Unfolded Protein Response/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-2/metabolism , Humans , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Splicing/drug effects , RNA, Messenger/metabolism , RNA, Ribosomal, 28S/metabolism , Sarcoma/metabolism , Sarcoma/pathology , Solvents/chemistry , Solvents/metabolism , TOR Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
14.
Nat Commun ; 8: 15832, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28607491

ABSTRACT

Mitochondrial integrity relies on homotypic fusion between adjacent outer membranes, which is mediated by large GTPases called mitofusins. The regulation of this process remains nonetheless elusive. Here, we report a crosstalk between the ubiquitin protease Ubp2 and the ubiquitin ligases Mdm30 and Rsp5 that modulates mitochondrial fusion. Ubp2 is an antagonist of Rsp5, which promotes synthesis of the fatty acids desaturase Ole1. We show that Ubp2 also counteracts Mdm30-mediated turnover of the yeast mitofusin Fzo1 and that Mdm30 targets Ubp2 for degradation thereby inducing Rsp5-mediated desaturation of fatty acids. Exogenous desaturated fatty acids inhibit Ubp2 degradation resulting in higher levels of Fzo1 and maintenance of efficient mitochondrial fusion. Our results demonstrate that the Mdm30-Ubp2-Rsp5 crosstalk regulates mitochondrial fusion by coordinating an intricate balance between Fzo1 turnover and the status of fatty acids saturation. This pathway may link outer membrane fusion to lipids homeostasis.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , F-Box Proteins/metabolism , Fatty Acids/metabolism , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , F-Box Proteins/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics
15.
Proc Natl Acad Sci U S A ; 114(26): E5158-E5166, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28584101

ABSTRACT

Botulism is characterized by flaccid paralysis, which can be caused by intoxication with any of the seven known serotypes of botulinum neurotoxin (BoNT), all of which disrupt synaptic transmission by endoproteolytic cleavage of SNARE proteins. BoNT serotype A (BoNT/A) has the most prolonged or persistent effects, which can last several months, and exerts its effects by specifically cleaving and inactivating SNAP25. A major factor contributing to the persistence of intoxication is the long half-life of the catalytic light chain, which remains enzymatically active months after entry into cells. Here we report that BoNT/A catalytic light chain binds to, and is a substrate for, the ubiquitin ligase HECTD2. However, the light chain evades proteasomal degradation by the dominant effect of a deubiquitinating enzyme, VCIP135/VCPIP1. This deubiquitinating enzyme binds BoNT/A light chain directly, with the two associating in cells through the C-terminal 77 amino acids of the light chain protease. The development of specific DUB inhibitors, together with inhibitors of BoNT/A proteolytic activity, may be useful for reducing the morbidity and public health costs associated with BoNT/A intoxication and could have potential biodefense implications.


Subject(s)
Botulinum Toxins, Type A/pharmacokinetics , Botulinum Toxins, Type A/toxicity , Endopeptidases/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Endopeptidases/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
16.
Cell Chem Biol ; 24(2): 231-242, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28163016

ABSTRACT

Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.


Subject(s)
Esters/metabolism , Sulfhydryl Compounds/metabolism , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Acylation , Esters/chemistry , Humans , Models, Molecular , Molecular Structure , Proteomics , Sulfhydryl Compounds/chemistry , Tumor Cells, Cultured
17.
PLoS One ; 11(10): e0163615, 2016.
Article in English | MEDLINE | ID: mdl-27732613

ABSTRACT

Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/pathology , Endoplasmic Reticulum/metabolism , Small Molecule Libraries/chemistry , Alleles , Benzoates/chemistry , Benzoates/pharmacology , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Furans/chemistry , Furans/pharmacology , Gene Deletion , HEK293 Cells , HeLa Cells , High-Throughput Screening Assays , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Microscopy, Fluorescence , Protein Folding , Protein Structure, Tertiary , Pyrazoles/chemistry , Pyrazoles/pharmacology , RNA, Messenger/metabolism , Small Molecule Libraries/pharmacology , Ubiquitination/drug effects , Vorinostat
18.
J Biol Chem ; 290(51): 30225-39, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26475854

ABSTRACT

RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Humans , Mutation , Protein Binding , Protein Structure, Tertiary , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
PLoS One ; 9(4): e92290, 2014.
Article in English | MEDLINE | ID: mdl-24714645

ABSTRACT

Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis.


Subject(s)
Prions/metabolism , Receptors, Autocrine Motility Factor/metabolism , Animals , Glycosylation , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Prions/chemistry , Proteolysis , Ubiquitin/metabolism , Ubiquitination
20.
Biochim Biophys Acta ; 1843(1): 47-60, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23747565

ABSTRACT

RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Subject(s)
Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination/physiology , Animals , Enzyme Activation , Humans , Models, Molecular , Protein Multimerization/physiology , Protein Structure, Tertiary/physiology , Protein Subunits/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL