Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38923284

ABSTRACT

A single-center, randomized, open, 2-period, self-crossover, single-dose trial was conducted to evaluate the bioequivalence of the test (T) and reference (R) preparations in healthy adult female subjects under fasting conditions. Seventy-six subjects were enrolled in the study, and subjects were randomly divided into 2 groups at a 1:1 ratio and were administered once per period, with a 4-day washout period. In each period, plasma drug concentrations, blood calcium changes, and antibodies were determined for pharmacokinetics, pharmacodynamics, and immunogenicity analysis, respectively, and adverse events were recorded for safety analysis. The 90% confidence intervals for the geometric mean ratios (T:R) of maximum plasma concentration, area under the plasma concentration-time curve from time 0 to the last measurable concentration, and area under the plasma concentration-time curve from time 0 to infinity were within the predefined bioequivalence criterion of 80%-125%, indicating bioequivalence between the T and R preparations under fasting conditions. Comparable serum calcium levels demonstrated pharmacodynamics similarity, and no differences were found in immunogenicity profiles. Additionally, the incidence of adverse reactions to the T preparation was 18.4% lower than that of the R preparation (31.6%). This study confirmed the bioequivalence of the T and R preparations under fasting conditions, along with comparable immunogenicity profiles and good safety.

2.
Cancer Lett ; 595: 216987, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38815798

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.


Subject(s)
AMP-Activated Protein Kinases , Epithelial-Mesenchymal Transition , Snail Family Transcription Factors , Triple Negative Breast Neoplasms , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Humans , Phosphorylation , AMP-Activated Protein Kinases/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Female , Cell Line, Tumor , Mice , Glucose/metabolism , Protein Stability , Energy Metabolism/drug effects , Drug Resistance, Neoplasm , F-Box Proteins/metabolism , F-Box Proteins/genetics
3.
Acta Pharm Sin B ; 14(4): 1772-1786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572096

ABSTRACT

Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 µmol/L) and neocnidilide (EC50 = 1.161 µmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 µmol/L) and safinamide (EC50 = 1.079 µmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.

4.
Exp Cell Res ; 434(1): 113864, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38040050

ABSTRACT

Metastasis is the primary cause of cancer-related deaths and remains poorly understood. Deubiquitinase OTU domain containing 4 (OTUD4) has been reported to regulate antiviral immune responses and resistance to radio- or chemo-therapies in certain cancers. However, the role of OTUD4 in cancer metastasis remain unknown. Here, we demonstrate that the depletion of OTUD4 in triple-negative breast cancer (TNBC) cells markedly suppress cell clonogenic ability, migration, invasion and cancer stem cell population in vitro as well as metastasis in vivo. Mechanistically, the tumor promoting function of OTUD4 is mainly mediated by deuiquitinating and stabilizing Snail1, one key transcriptional factor in the epithelial-mesenchymal transition. The inhibitory effect of targeting OTUD4 could be largely reversed by the reconstitution of Snail1 in OTUD4-deficient cells. Overall, our study establishes the OTUD4-Snail1 axis as an important regulatory mechanism of breast cancer metastasis and provides a rationale for potential therapeutic interventions in the treatment of TNBC.


Subject(s)
Snail Family Transcription Factors , Triple Negative Breast Neoplasms , Ubiquitin-Specific Proteases , Ubiquitin-Specific Proteases/metabolism , MDA-MB-231 Cells , HEK293 Cells , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/physiopathology , Neoplasm Metastasis/genetics , Snail Family Transcription Factors/metabolism , Humans , Female , Animals , Mice , Cell Movement/genetics , Neoplasm Invasiveness/genetics , Protein Stability
5.
J Cell Physiol ; 238(11): 2546-2555, 2023 11.
Article in English | MEDLINE | ID: mdl-37642406

ABSTRACT

Melanoma is the most aggressive form of skin cancer with rapidly increased incidence worldwide especially in the Caucasian population. Surgical excision represents the curative treatment choice in patients with early-stage disease. However, the therapeutic outcomes in patients with metastatic melanoma remains unsatisfactory. Thus, understanding molecular mechanisms contributing to metastasis and chemoresistance is critical for new improved therapies of melanoma. Snail1, an important epithelial-mesenchymal transition transcription factors (EMT-TFs), is critical to induce the EMT process, thereby contributing to cancer metastasis. However, the involvement of Snail1 in melanoma metastasis remains elusive and the underlying mechanism to regulate Snail1 in melanoma needs to be further investigated. Here, we identified OTUD4 as a novel deubiquitinase of Snail1 in melanoma. Moreover, the depletion of OTUD4 in melanoma cells markedly inhibited Snail1 stability and Snail1-driven malignant phenotypes both in vitro and in vivo. Overall, our study establishes OTUD4 as a novel therapeutic target in metastasis and chemoresistance of melanoma by stabilizing Snail1 and provides a rationale for potential therapeutic strategies of melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/genetics , Melanoma/drug therapy , Melanoma/genetics , Mice, Nude , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Snail Family Transcription Factors/genetics , Transcription Factors/genetics , Ubiquitin-Specific Proteases
6.
Cell Death Differ ; 30(4): 1082-1095, 2023 04.
Article in English | MEDLINE | ID: mdl-36813923

ABSTRACT

The VHL protein (pVHL) functions as a tumor suppressor by regulating the degradation or activation of protein substrates such as HIF1α and Akt. In human cancers harboring wild-type VHL, the aberrant downregulation of pVHL is frequently detected and critically contributes to tumor progression. However, the underlying mechanism by which the stability of pVHL is deregulated in these cancers remains elusive. Here, we identify cyclin-dependent kinase 1 (CDK1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) as two previously uncharacterized regulators of pVHL in multiple types of human cancers harboring wild-type VHL including triple-negative breast cancer (TNBC). PIN1 and CDK1 cooperatively modulate the protein turnover of pVHL, thereby conferring tumor growth, chemotherapeutic resistance and metastasis both in vitro and in vivo. Mechanistically, CDK1 directly phosphorylates pVHL at Ser80, which primes the recognition of pVHL by PIN1. PIN1 then binds to phosphorylated pVHL and facilitates the recruitment of the E3 ligase WSB1, therefore targeting pVHL for ubiquitination and degradation. Furthermore, the genetic ablation or pharmacological inhibition of CDK1 by RO-3306 and PIN1 by all-trans retinoic acid (ATRA), the standard care for Acute Promyelocytic Leukemia could markedly suppress tumor growth, metastasis and sensitize cancer cells to chemotherapeutic drugs in a pVHL dependent manner. The histological analyses show that PIN1 and CDK1 are highly expressed in TNBC samples, which negatively correlate with the expression of pVHL. Taken together, our findings reveal the previous unrecognized tumor-promoting function of CDK1/PIN1 axis through destabilizing pVHL and provide the preclinical evidence that targeting CDK1/PIN1 is an appealing strategy in the treatment of multiple cancers with wild-type VHL.


Subject(s)
CDC2 Protein Kinase , Triple Negative Breast Neoplasms , Humans , NIMA-Interacting Peptidylprolyl Isomerase/genetics , CDC2 Protein Kinase/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Tretinoin/pharmacology
7.
Adv Sci (Weinh) ; 10(11): e2205873, 2023 04.
Article in English | MEDLINE | ID: mdl-36782089

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. TWIST1, a key transcriptional factor of epithelial-mesenchymal transition (EMT), contributes to self-renewal of cancer stem-like cells (CSCs), chemo-resistance, metastasis, and TNBC-related death. However, the mechanism by which TWIST1 is deregulated in TNBC remains elusive. Here, USP29 is identified as a bona fide deubiquitinase of TWIST1. The deubiquitination of TWIST1 catalyzed by USP29 is required for its stabilization and subsequent EMT and CSC functions in TNBC, thereby conferring chemotherapeutic resistance and metastasis. Furthermore, the results unexpectedly reveal that CDK1 functions as the direct USP29 activator. Mechanistically, CDK1-mediated phosphorylation of USP29 is essential for its deubiquitinase activity toward TWIST1 and TWIST1 driven-malignant phenotypes in TNBC, which could be markedly mitigated by the genetic ablation or pharmacological inhibition of CDK1. Moreover, the histological analyses show that CDK1 and USP29 are highly upregulated in TNBC samples, which positively correlate with the expression of TWIST1. Taken together, the findings reveal a previously unrecognized tumor-promoting function and clinical significance of the CDK1-USP29 axis through stabilizing TWIST1 and provide the preclinical evidence that targeting this axis is an appealing therapeutic strategy to conquer chemo-resistance and metastasis in TNBC.


Subject(s)
CDC2 Protein Kinase , Triple Negative Breast Neoplasms , Twist-Related Protein 1 , Ubiquitin-Specific Proteases , Humans , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Deubiquitinating Enzymes , Nuclear Proteins/metabolism , Phosphorylation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Twist-Related Protein 1/metabolism , Ubiquitin-Specific Proteases/metabolism , Carcinogenesis/genetics
8.
Front Pharmacol ; 13: 1040163, 2022.
Article in English | MEDLINE | ID: mdl-36313280

ABSTRACT

Chronic inflammation plays a pivotal role in cancer development. Cancer cells interact with adjacent cellular components (pro-inflammatory cells, intrinsic immune cells, stromal cells, etc.) and non-cellular components to form the inflammatory tumor microenvironment (TME). Interleukin 6 (IL-6), macrophage migration inhibitory factor (MIF), immune checkpoint factors and other pro-inflammatory cytokines produced by intrinsic immune cells in TME are the main mediators of intercellular communication in TME, which link chronic inflammation to cancer by stimulating different oncogenic signaling pathways and improving immune escape to promote cancer development. In parallel, the ability of monocytes, T regulatory cells (Tregs) and B regulatory cells (Bregs) to perform homeostatic tolerogenic functions is hijacked by cancer cells, leading to local or systemic immunosuppression. Standard treatments for advanced malignancies such as chemotherapy and radiotherapy have improved in the last decades. However, clinical outcomes of certain malignant cancers are not satisfactory due to drug resistance and side effects. The clinical application of immune checkpoint therapy (ICT) has brought hope to cancer treatment, although therapeutic efficacy are still limited due to the immunosuppressive microenvironment. Emerging evidences reveal that ideal therapies including clearance of tumor cells, disruption of tumor-induced immunosuppression by targeting suppressive TME as well as reactivation of anti-tumor T cells by ICT. Here, we review the impacts of the major pro-inflammatory cells, mediators and their downstream signaling molecules in TME on cancer development. We also discuss the application of targeting important components in the TME in the clinical management of cancer.

9.
Eur J Med Chem ; 230: 114088, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35007863

ABSTRACT

KRAS is the most frequently mutated oncogene and plays a predominant role in driving initiation and progression of multiple cancers. Attempts to degrade the oncogene KRASG12C with PROTAC strategy have been considered as an alternative strategy to combate cancers. However, the irreversible PROTACs may compromise the substoichiometric activity to decrease the potency. Herein, we report the development of YF135, the first reversible-covalent PROTAC capable of recruiting VHL mediated proteasomal degradation of KRASG12C. YF135 induces the rapid and sustained degradation of endogenous KRASG12C and attenuates pERK signaling in H358 and H23 cells in a reversible manner.


Subject(s)
Neoplasms , Oligopeptides/pharmacology , Proto-Oncogene Proteins p21(ras) , Carcinogenesis , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Oncogenes , Proto-Oncogene Proteins p21(ras)/genetics
10.
Cell Death Discov ; 7(1): 40, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637687

ABSTRACT

CREB-binding protein (CBP) is an acetyltransferase known to play multiple roles in the transcriptions of genes involving oxidative metabolism, cell cycle, DNA damage checkpoints, and cell death. In this study, CBP was found to positively regulate the expression of Ku70, and both CBP and Ku70 were found to negatively regulate the expression of NOX2, therefore, mitigating the intracellular ROS in human melanoma. Knocking down CBP or Ku70 induced necrotic and paraptotic cell death as indicated by high-level intracellular ROS, cytoplasmic vacuolization, and cell cycle arrest in the S phase. In addition, chromosomal condensations were also observed in the cells proceeding necrotic and paraptotic cell death, which was found to be related to the BAX-associated intrinsic pathway of apoptotic cell death, when Ku70 was decreased either by CBP depletion or by Ku70 depletion directly. Our results, therefore, supported the idea that CBP, Ku70, BAX, and NOX2 have formed a transcriptional network in the prevention of cell death of necrosis, paraptosis, and apoptosis in human melanoma.

11.
Molecules ; 25(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041216

ABSTRACT

Liposomes are extensively used in drug delivery, while alginates are widely used in tissue engineering. However, liposomes are usually thermally unstable and drug-leaking when in liquids, while the drug carriers made of alginates show low loading capacities when used for drug delivery. Herein, we developed a type of thermo-responsible liposome-alginate composite hydrogel (TSPMAH) by grafting thermo-responsive liposomes onto alginates by using Ca2+ mediated bonding between the phosphatidic serine (PS) in the liposome membrane and the alginate. The temperature-sensitivity of the liposomes was actualized by using phospholipids comprising dipalmitoylphosphatidylcholine (DPPC) and PS and the liposomes were prepared by a thin-film dispersion method. The TSPMAH was then successfully prepared by bridge-linking the microcapsules onto the alginate hydrogel via PS-Ca2+-Carboxyl-alginate interaction. Characterizations of the TSPMAH were carried out using scanning electron microscopy, transform infrared spectroscopy, and laser scanning confocal microscopy, respectively. Their rheological property was also characterized by using a rheometer. Cytotoxicity evaluations of the TSPMAH showed that the composite hydrogel was biocompatible, safe, and non-toxic. Further, loading and thermos-inducible release of model drugs encapsulated by the TSPMAH as a drug carrier system was also studied by making protamine-siRNA complex-carrying TSPMAH drug carriers. Our results indicated that the TSPMAH described herein has great potentials to be further developed into an intelligent drug delivery system.


Subject(s)
Alginates/chemistry , Hydrogels/chemical synthesis , Phospholipids/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Calcium/chemistry , Capsules , Drug Stability , Hydrogels/chemistry , Liposomes , Phosphatidylcholines/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL