Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 902: 166072, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544443

ABSTRACT

Isotopic methodologies have gained prominence in investigating the composition of plant water sources; however, concerns regarding their suitability and reliability in diverse environments have emerged in recent years. This study presents a comparative analysis of root, soil, and liquid water (precipitation, dew, and groundwater) samples obtained from a desert steppe using isotope ratio infrared spectrometry (IRIS) and isotope ratio mass spectrometry (IRMS). The objective was to evaluate the applicability of these techniques in discerning the water sources of Stipa breviflora, a shallow-rooted herbaceous plant species. Additionally, we explored the root water uptake characteristics and water use strategy of S. breviflora. Our findings indicate that the IRIS method had more enriched values of D compared to the IRMS method across all samples, while no discernible pattern was observed for 18O. Notably, the differences observed among all samples exceeded the instruments' accuracies. Moreover, an unexpected occurrence was noted, whereby both D and 18O values in the root water were more enriched than in any of the considered water sources, rendering identification of the plant water sources unattainable. By conducting a re-analysis of more refined soil layer samples, we discovered that S. breviflora exhibits the ability to absorb and utilize water sources in close proximity to the soil surface. It further suggested that the shallow-rooted herbaceous plants in desert steppes can exploit small rainfalls, frequently overlooked in their ecological importance. Considering the distinctive soil and plant characteristics of desert steppes, we recommend adopting IRMS methods in conjunction with refined surface soil sampling for isotopic analysis aiming to identify water sources of shallow-rooted herbaceous plants. This study provides novel insights into assessing the suitability of isotopic techniques for analyzing plant water sources, while enhancing our understanding of water use strategies and environmental adaptation mechanisms employed by shallow-rooted herbaceous plants within xerophytic grassland ecosystems.


Subject(s)
Ecosystem , Water , Water/analysis , Reproducibility of Results , Plants/chemistry , Soil/chemistry , Isotopes/analysis
2.
Sci Total Environ ; 875: 162529, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36870496

ABSTRACT

Drought-flood abrupt alternation (DFAA) is characterized by a period of persistent drought followed by sudden heavy precipitation at a certain level, with impacts on ecosystems and socioeconomic environment. At present, previous studies have mainly focuses on the monthly scale and regional scale. However, this study proposed a multi-indicator daily-scale method for identifying the DFAA occurrence, and explored the DFAA events over China from 1961 to 2018. The DFAA events mainly occurred in the center and southeast of China, especially in the Yangtze River Basin, Pearl River Basin, Huai River Basin, Southeast Rivers Basin, and south part of the Southwest Rivers Basin. The spatial coverage has a statistically significant (p < 0.05) increasing trend over China, of 0.355 %/decade. The occurrence and spatial coverage of DFAA events increased by decades, and were mainly concentrated in summer (around 85 %). The possible formation mechanisms were closely related to global warming, atmospheric circulation index anomalies, soil properties (e.g., soil field capacity), etc.

3.
Front Plant Sci ; 14: 1118131, 2023.
Article in English | MEDLINE | ID: mdl-36938026

ABSTRACT

The resource allocation of different component organs of crops under drought stress is a strategy for the coordinated growth of crops, which also reflects the adaptability of crops to drought condition. In this study, maize variety namely 'Denghai 618', under the ventilation shed, two treatment groups of light drought (LD) and moderate drought (MD), and the same rehydration after drought are set, as well as the normal water supply for control in shed (CS). The drought experiment was conducted in the jointing-tasseling stage in 2021. The effects of different drought stress on the water content and biomass allocation of each component organ were analyzed. The results showed that (1) during the drought period, the water content of each component organ of summer maize decreased in general, but the Water content distribution ratio (WCDR) of the root increased by 1.83%- 2.35%. The WCDR of stem increased by 0.52%- 1.40%. (2) Under different drought treatments, the root biomass (RB) increased 33.94% ~ 46.09%, and fruit biomass (FB) increased 1.46% ~ 2.49%, the leaf biomass (LB) decreased by 8.2% and 1.46% respectively under LD and MD. (3) The allometric growth model constructed under sufficient water is not suitable for drought stress; the allometric exponent α under drought stress is lower than that of the CS: CS (α=1.175) > MD (α = 1.136) > LD (α = 1.048), which also indicates that the impact of existing climate change on grain yield may be underestimated. This study is helpful to understand the adaptive strategies of the coordinated growth of maize component organs under drought stress and provide a reference for the prediction of grain yield under climate change.

4.
Front Plant Sci ; 14: 1016993, 2023.
Article in English | MEDLINE | ID: mdl-36760635

ABSTRACT

Crop resilience refers to the adaptive ability of crops to resist drought at a certain level. Currently, most of the research focuses on the changes in root or photosynthesis traits of crops after drought and rehydration. Still, the persistence effect (drought period (T2) - rehydration period (T3) - harvest period (T4)) of drought stress on crops and quantitative estimation of resilience is still unclear. Field experiments were conducted in this study to determine the persistence effects on above-ground and below-ground growth indicators of summer maize at different levels and durations of drought. Next, an evaluation method for integrated resilience of summer maize was proposed, and a quantitative assessment of integrated resilience was made by Principal Component Analysis (PCA) and resilience index calculation. The results showed that the resilience of summer maize decreased with increasing drought levels, which persisted until harvest. Although summer maize resilience was strong after rewatering under light drought (DR1), declined after sustained rewatering. At the same time, production had decreased. However, a specific drought duration could improve the resilience of summer maize under light drought conditions. In particular, leaf biomass and root growth in the 30-50 cm layer could be enhanced under long duration light drought (LDR1), thus improving summer maize resilience and yield. Thus, under water shortage conditions, a certain level and duration drought could improve the resilience and yield of summer maize, which would persist until harvest. Clarifying the persistent effects on the growth indicators of summer maize and quantitatively evaluating the resilience of summer maize could improve agricultural food production and water use efficiency.

5.
Sci Total Environ ; 854: 158564, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36075420

ABSTRACT

Under the continuing influence of global warming, resolving the inconsistency of permafrost degradation rates and quantifying the spatial distribution characteristics are critical for high-altitude water cycle processes. The dynamics of permafrost degradation are mainly manifested in soil temperature, which can be measured with high accuracy and high temporal resolution. This study considered the influence of soil thermal conductivity (K) by periodic land surface temperature (LST), improved the static output of the temperature at the top of permafrost (TTOP) model, and verified the reliability of the TTOP model improvement by the Kappa coefficient. The results showed that from 2000 to 2020, the extent of dynamically simulated permafrost was 5.42 × 105 km2 less than that of static simulated permafrost, and the linear degradation rate doubled. The degraded permafrost showed an increasing degradation from southeast to northwest. Among them, the degradation in the Nujiang River and the Changjiang River north of the Nyainqentanglha Mountain has exacerbated the permafrost degradation in the hinterland of the Qiangtang Plateau. Based on the AWI-CM-1-1-MR LST from CMIP6, SSP126 to SSP585 dynamic simulation results of permafrost indicate that the extent will decrease by 11.35 % by 2100. Overall, the extent and rate of permafrost degradation, considering high spatiotemporal resolution, were twice as fast as expected. Our results will inform policymakers with a more accurate spatiotemporal distribution of frozen soil types in high-altitude regions and characteristics of permafrost degradation within the watershed.

6.
Front Plant Sci ; 13: 918397, 2022.
Article in English | MEDLINE | ID: mdl-36352864

ABSTRACT

Accurate calculation of root water uptake (RWU) is the key to improving vegetation water use efficiency and identifying water cycle evolution patterns, and root tips play an important role in RWU. However, most of the current RWU models in the alpine meadow are calculated based on the root length density (RLD) function. In this study, a large number of roots, soil hydraulic conductivity, and physicochemical property indices were obtained by continuous field prototype observation experiments for up to 2 years. It was found that the RLD and root tip density (RTD) in alpine meadows decrease by 16.2% and 14.6%, respectively, in the wilting stage compared to the regreening stage. The RTD distribution function of the alpine meadow was constructed, and the RWU model was established accordingly. The results show that the RTD function is more accurate than the RLD function to reflect the RWU pattern. Compared with RLD, the simulated RWU model constructed by using RTD as the root index that can effectively absorb water increased by 24.64% on average, and the simulated values were more consistent with the actual situation. It can be seen that there is an underestimation of RWU calculated based on the RLD function, which leads to an underestimation of the effect of climate warming on evapotranspiration. The simulation results of the RWU model based on RTD showed that the RWU rate in the regreening stage increased by 30.24% on average compared with that in the wilting stage. Meanwhile, the top 67% of the rhizosphere was responsible for 86.76% of the total RWU on average. This study contributes to the understanding of the alpine meadow water cycle system and provides theoretical support for the implementation of alpine meadow vegetation protection and restoration projects.

7.
Sci Data ; 9(1): 640, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271026

ABSTRACT

Population and water withdrawal data sets are currently faced with difficulties in collecting, processing and verifying multi-source time series, and the spatial distribution characteristics of long series are also relatively lacking. Time series is the basic guarantee for the accuracy of data sets, and the production of long series spatial distribution is a realistic requirement to expand the application scope of data sets. Through the time-consuming and laborious basic processing work, this research focuses on the population and water intake time series, and interpolates and extends them to specific land uses to ensure the accuracy of the time series and the demand of spatially distributed data sets. This research provides a set of population density and water intensity products from 1960 to 2020 distributed to the administrative units or the corresponding regions. The data set fills the gaps in the multi-year data set for the accuracy of population density and the intensity of water withdrawal.


Subject(s)
Population Dynamics , Water Resources , Humans , Population Density
8.
Sci Total Environ ; 851(Pt 1): 158048, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35985577

ABSTRACT

The Tibetan Plateau (TP), with its widely distributed cryosphere elements and the source of 12 major rivers, is a strategic area for Asian water resource generation, storage, and migration. Because of the unique surface water resources (SWR) characteristics, multi-phase and multiple sources, the hydrological process here is extremely complex. Coupled with the lack of measured data, the SWR in the TP has not been quantified refinedly. Thus, an improved large-scale SWR assessment method was proposed based on the produce water coefficient (PWC) method considering snowmelt. It overcomes the challenge of scarcity of data on ungauged regions. As climate changes, long-sequence dynamic evaluation of SWR can be achieved refinedly. As a result, the datasets of the amount of SWR of the level 4 water resources zones (WRZ) in the TP from 1956 to 2018 were obtained by calculating the PWC and snowmelt. Then spatiotemporal characteristics of SWR in the TP were analyzed. The results showed that the annual average SWR of the TP has been increasing over the past 60 years. Affected by climate change, the SWR in the Eastern TP increased, while the SWR in the Western TP (western part of the Karakoram Mountains) decreased significantly. The findings could be beneficial for water resource security and sustainable development in Asia. This revised method, which well avoided the misestimation of classical methods, could be used to evaluate the large-scale SWR for cold and ungauged regions.


Subject(s)
Environmental Monitoring , Water Resources , Environmental Monitoring/methods , Rivers , Tibet , Water
9.
Sci Total Environ ; 837: 155595, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35490811

ABSTRACT

The Tibetan Plateau (TP) is the area with most high-altitude lakes in the world, of which most are in the Qiangtang Plateau (QP), the endorheic basin of the TP. Since the 1990s, abundant studies have reported the accelerated expansion of lakes in the QP. However, the dominant factors affecting lakes expansion or shrinkage are still controversial. Here we extract six periods of 300 lakes according to the satellite image. It indicates that 90% of the lakes in the QP were expanding, mainly located in the middle of the plateau; 10% of the lakes tended to shrink, mainly located in the areas surrounding the plateau and near the Tanggula Mountain and Nyainqentanglha Mountain, with an altitude over 4500 m. Meanwhile, we explored the influence factors for lake area changes by analyzing the variations in precipitation and glacier. Seven different driving models leading to the lake changes are proposed. Lake expansion was mainly caused by the increase of precipitation and glacier melting, while the causes of lake shrinkage are quite different, such as the change of precipitation and evaporation, the geological structure of lake outlet, the increase of outflow caused by the more transformation of lake water from solid to liquid, etc. This study can provide some support for plateau grassland protection and ice lake outburst prevention.


Subject(s)
Ice Cover , Lakes , Ice Cover/chemistry , Lakes/chemistry , Tibet
10.
Chemosphere ; 281: 130773, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34000656

ABSTRACT

Improving accumulation of heavy metals (HMs) by plants is an important pathway for constructed wetland (CW) to alleviate the environmental risks caused by their release. This study aims to regulate HMs (Cr, Ni, Cu, Zn, and Cd) accumulated by Acorus calamus L. in the sandy substrate CW with different nitrogen forms, including ammonia (NH4+), nitrate (NO3‾), and NH4+/NO3‾ (1:1) in synthetic tailwaters. In general, the removal efficiency of HMs by CW could reach 92.4% under the initial concentrations below 500 µg/L. Accumulation percentages of HMs in the shoots and roots of plants in CW with NH4+ and NH4+/NO3‾ influents increased by 52-395% and 15-101%, respectively, when compared with that of NO3‾ treatment. Influents with NH4+ promoted plant growth of Acorus calamus L. and metabolic functions, such as carbohydrate metabolism/amino acid metabolism, related to HMs mobilization of rhizosphere bacterial communities, which might induce more organic acids and amino acids secreted by plants and microbes during their metabolic processes. These are the main reasons for the enhancive mobilization of HMs from their precipitation fractions and their uptake by plants in CW with NH4+ treatments. Moreover, the enhancement of organics secreted from plants and microbes also led to the high denitrification efficiency and nitrogen removal in CW. Overall, this study could provide a feasible method for the enhancive accumulation of HMs by wetland plants via the regulation water treatment process to appropriately increase NH4+ for CW.


Subject(s)
Acorus , Metals, Heavy , Water Purification , Nitrogen , Wetlands
11.
Front Microbiol ; 12: 768921, 2021.
Article in English | MEDLINE | ID: mdl-35111138

ABSTRACT

Soil microbial communities are essential to phosphorus (P) cycling, especially in the process of insoluble phosphorus solubilization for plant P uptake. Phosphate-solubilizing microorganisms (PSM) are the dominant driving forces. The PSM mediated soil P cycling is easily affected by water condition changes due to extreme hydrological events. Previous studies basically focused on the effects of droughts, floods, or drying-rewetting on P cycling, while few focused on drought-flood abrupt alternation (DFAA), especially through microbial activities. This study explored the DFAA effects on P cycling mediated by PSM and P metabolism-related genes in summer maize field soil. Field control experiments were conducted to simulate two levels of DFAA (light drought-moderate flood, moderate drought-moderate flood) during two summer maize growing periods (seeding-jointing stage, tasseling-grain filling stage). Results showed that the relative abundance of phosphate-solubilizing bacteria (PSB) and phosphate-solubilizing fungi (PSF) increased after DFAA compared to the control system (CS), and PSF has lower resistance but higher resilience to DFAA than PSB. Significant differences can be found on the genera Pseudomonas, Arthrobacter, and Penicillium, and the P metabolism-related gene K21195 under DFAA. The DFAA also led to unstable and dispersed structure of the farmland ecosystem network related to P cycling, with persistent influences until the mature stage of summer maize. This study provides references for understanding the micro process on P cycling under DFAA in topsoil, which could further guide the DFAA regulations.

12.
Article in English | MEDLINE | ID: mdl-31726689

ABSTRACT

Stable hydrogen and oxygen isotopes are important indicators for studying water cycles. The isotopes are not only affected by climate, but are also disturbed by human activities. Urban construction has changed the natural attributes and underlying surface characteristics of river basins, thus affecting the isotopic composition of river water. We collected urban river water isotope data from the Global Network for Isotopes in Rivers (GNIR) database and the literature, and collected river water samples from the Naqu basin and Huangshui River basin on the Tibetan Plateau to measure hydrogen and oxygen isotopes. Based on 13 pairs of urban area and non-urban area water samples from these data, the relationship between the isotopic values of river water and the artificial surface area of cities around rivers was analyzed. The results have shown that the hydrogen and oxygen isotope (δD and δ18O) values of river water in urban areas were significantly higher than those in non-urban areas. The isotopic variability of urban and non-urban water was positively correlated with the artificial surface area around the rivers. In addition, based on the analysis of isotope data from 21 rivers, we found that the cumulative effects of cities on hydrogen and oxygen isotopes have led to differences in surface water line equations for cities with different levels of development. The combined effects of climate and human factors were the important reasons for the variation of isotope characteristics in river water in cities. Stable isotopes can not only be used to study the effects of climate on water cycles, but also serve as an important indicator for studying the degree of river development and utilization.


Subject(s)
Environmental Monitoring/methods , Hydrogen/chemistry , Oxygen/chemistry , Rivers/chemistry , Cities , Humans , Isotopes/analysis , Oxygen Isotopes , Water Cycle
13.
Sci Data ; 6(1): 219, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641130

ABSTRACT

As basic data, the river networks and water resources zones (WRZ) are critical for planning, utilization, development, conservation and management of water resources. Currently, the river network and WRZ of world are most obtained based on digital elevation model data automatically, which are not accuracy enough, especially in plains. In addition, the WRZ code is inconsistent with the river network, hindering the efficiency of data in hydrology and water resources research. Based on the global 90-meter DEM data combined with a large number of auxiliary data, this paper proposed a series of methods for generating river network and water resources zones, and then obtained high-precision global river network and corresponding WRZs at level 1 to 4. The dataset provides generated rivers with high prevision and more accurate position, reasonable basin boundaries especially in inland and plain area, also the first set of global WRZ at level 1 to 4 with unified code. It can provide an important basis and support for reasonable use of water resources and sustainable social development in the world.

14.
Sci Data ; 6(1): 171, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31492873

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Article in English | MEDLINE | ID: mdl-31121932

ABSTRACT

The 2303 Wetlands of International Importance distribute unevenly in different continents. Europe owns the largest number of sites, while Africa has the largest area of sites. More than half of the sites are affected by three or four impact factors (55%). The most significant impact factors are pollution (54%), biological resources use (53%), natural system modification (53%), and agriculture and aquaculture (42%). The main affected objects are land area and environment of the wetlands, occurred in 75% and 69% of the sites, respectively. The types most affected by land area occupation are river wetlands and lake wetlands, the types with the greatest impact on environment are marine/coastal wetlands and river wetlands, the type with the greatest impact on biodiversity is river wetlands, the types most affected by water resources regulation are marsh wetlands and river wetlands, and the types most affected by climate change are lake wetlands and marine/coastal wetlands. About one-third of the wetland sites have been artificially reconstructed. However, it is found that the proportions of natural wetland sites not affected or affected by only one factor are generally higher than that of wetland sites both containing natural wetlands and human-made wetlands, while the proportions of wetland sites both containing natural wetlands and human-made wetlands affected by three or four factors are generally higher than that of natural wetland sites. Wetland sites in the UK and Ireland are least affected among all countries. Wetland management plans in different regions still have large space for improvement, especially in Africa and Asia. The protection and restoration of global wetlands can be carried out in five aspects, including management and policy, monitoring, restoration, knowledge, and funding.


Subject(s)
Biodiversity , Conservation of Natural Resources , Environmental Monitoring , Wetlands
16.
Sci Data ; 6(1): 62, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31097706

ABSTRACT

A catchment is the basic unit for studying hydrologic cycle processes and associated climate change impacts. Accurate catchment delineation is essential in the field of hydrology, environment, and meteorology. Traditionally, catchment delineation is most easily carried out where the outflow area can be easily determined because of a well-defined outlet. The obstacle of the current study is to determine accurately the catchment boundary of lakes that are internally draining and, therefore, lack a well-defined outflow (i.e. inland lakes). This study describes a catchment delineation method which demarcated all the catchments of the lakes in the Qiangtang Plateau, especially for the inland lakes and their closed catchments. Lake catchment boundaries determined for the Qiangtang Plateau provide a significant advancement for water resource and climate change evaluation and agriculture production in the area.

17.
Article in English | MEDLINE | ID: mdl-31027227

ABSTRACT

Under the influence of global climate change, the discharges of major global rivers directed into the ocean have undergone significant changes. To study the trends and causes in discharge variation, we selected 40 large rivers and analyzed their annual discharges near their estuaries from 1960 to 2010. The method of runoff variation attribution analysis based on the Budyko hypothesis for large-scale basins was developed, in which influencing factors of human activities and glacial melting factors were added to the formula. The contribution rate of climate factors and human activities to changes in discharge were quantitatively identified. Climatic factors include precipitation, evapotranspiration and glacial melting. Human activity factors include underlying surface and artificial water transfer. The contribution rate is determined by the elastic coefficient, which is obtained by the ratio of change rate of each factor and the change rate of runoff. The results indicated that the discharges predominantly showed downward trends with a few upward trends. Rivers in North America and Africa showed downward trends, and those in Europe principally showed upward trends. Climate was the main influencing factor of discharges changes, and only approximately 25% of river discharges were greatly affected by human activities. River discharges in 75% of the basins which mainly contains subtropical monsoon humid climate and savanna climate zones showed upward trends. In the four basins which are mainly contains tropical rainforest climate and tropical monsoon climate, they all showed downward trends. The trend of discharges in the temperate monsoon climate, temperate continental climate, and temperate maritime climate cannot be accurately judged because of irregular variation. The discharges in the mid-high latitudinal zones predominantly showed upward trends, while those in the mid-low latitudinal zones with the influence of human activities showed downward trends.


Subject(s)
Climate Change , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Oceans and Seas , Rivers/chemistry , Seawater/chemistry , Humans
18.
Article in English | MEDLINE | ID: mdl-30813626

ABSTRACT

It has become a hot issue to study extreme climate change and its impacts on water quality. In this context, this study explored the evolution characteristics of drought⁻flood abrupt alternation (DFAA) and its impacts on total nitrogen (TN) and total phosphorous (TP) pollution, from 2020 to 2050, in the Luanhe river basin (LRB), based on the predicted meteorological data of the representative concentration pathways (RCPs) climate scenarios and simulated surface water quality data of the Soil and Water Assessment Tool (SWAT) model. The results show that DFAA occurred more frequently in summer, with an increasing trend from northwest to southeast of the LRB, basically concentrated in the downstream plain area, and the irrigation area. Meanwhile, most of the DFAA events were in light level. The incidence of TN pollution was much larger than the incidence of TP pollution and simultaneous occurrence of TN and TP pollution. The TN pollution was more serious than TP pollution in the basin. When DFAA occurred, TN pollution almost occurred simultaneously. Also, when TP pollution occurred, the TN pollution occurred simultaneously. These results could provide some references for the effects and adaptation-strategies study of extreme climate change and its influence on surface water quality.


Subject(s)
Climate Change , Droughts , Environmental Monitoring , Floods , Models, Theoretical , Rivers/chemistry , China , Computer Simulation , Nitrogen/analysis , Phosphorus/analysis , Seasons , Water Pollutants, Chemical/analysis
19.
Water Res ; 150: 340-348, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30530128

ABSTRACT

The frequent occurrence of polycyclic aromatic hydrocarbons (PAHs) in aquatic environments is of great concern because of their teratogenicity, toxicity, carcinogenicity, and mutagenicity to plants, animals and human beings. In this study the bioelectricity generation, biodegradation, phytoextraction and substrate adsorption of phenanthrene and anthracene in a constructed wetland-microbial fuel cell (CW-MFC) were investigated with an anode electrode amended with or without biochar-nZVI. During a 182-day operation period, the average removal efficiency for phenanthrene and anthracene ranged from 88.5% to 96.4%. The concentration of phenanthrene in roots, stems and laminas of T. orientalis was 14.9, 3.9 and 2.3 ng g-1 respectively, while that of anthracene was 22.2, 3.1 and 1.3 ng g-1, respectively. In addition, the application of nZVI was conducive to bioelectricity generation and organic compound degradation in the CW-MFC reactor. The distribution of the bacterial community indicated that the relative abundance of Bacillus, Paludibacter, Desulfovibrio and Lactococcus with a degradation capability for refractory organics was significantly increased. Especially the genus Bacillus for excreting catalase became more abundant. The results of our study indicate how to promote bioelectricity generation and biodegradation of refractory organic compounds in a CW-MFC by improving the culture conditions for bacteria.


Subject(s)
Bioelectric Energy Sources , Phenanthrenes , Anthracenes , Electrodes , Wetlands
20.
Water Sci Technol ; 78(9): 1990-1996, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30566102

ABSTRACT

The aim of this study was to investigate the different performance of bioelectricity generation and wastewater treatment between constructed wetland (CW) respectively coupled with air-cathode microbial fuel cell (ACMFC) and microbial fuel cell (MFC) under a fed-batch mode. During a 75-day-operation, the voltage of CW-ACMFC and CW-MFC ranged from 0.36 to 0.52 V and from -0.04 to 0.07 V, indicating that the bioenergy output of CW-ACMFC was significantly higher than that of CW-MFC system. In addition, the maximum of power density of CW-ACMFC and CW-MFC was 4.21 and 0.005 mW m-2. Notably, the chemical oxygen demand (COD) and NH3-N removal efficiency of CW-ACMFC was slightly higher than that in CW-MFC, which resulted from a higher voltage accelerating the transport of electron donors and the growth of microorganisms and plants. This study possesses a probability of using ACMFC coupled with CW to enhance the pollutant removal performance in CW system.


Subject(s)
Bioelectric Energy Sources , Waste Disposal, Fluid/methods , Wetlands , Electricity , Electrodes , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL