Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Dysphagia ; 38(1): 171-180, 2023 02.
Article En | MEDLINE | ID: mdl-35482213

The hyoid bone excursion is one of the most important gauges of larynx elevation in swallowing, contributing to airway protection and bolus passage into the esophagus. However, the implications of various parameters of hyoid bone excursion, such as the horizontal or vertical displacement and velocity, remain elusive and raise the need for a tool providing automatic kinematics analysis. Several conventional and deep learning-based models have been applied automatically to track the hyoid bone, but previous methods either require partial manual localization or do not transform the trajectory by anatomic axis. This work describes a convolutional neural network-based algorithm featuring fully automatic hyoid bone localization and tracking and spine axis determination. The algorithm automatically estimates the hyoid bone trajectory and calculates several physical quantities, including the average velocity and displacement in horizontal or vertical anatomic axis. The model was trained in a dataset of 365 videos of videofluoroscopic swallowing from 189 patients in a tertiary medical center and tested using 44 videos from 44 patients with different dysphagia etiologies. The algorithm showed high detection rates for the hyoid bone. The results showed excellent inter-rater reliability for hyoid bone detection, good-to-excellent inter-rater reliability for calculating the maximal displacement and the average velocity of the hyoid bone in horizontal or vertical directions, and moderate-to-good reliability in calculating the average velocity in horizontal direction. The proposed algorithm allows for complete automatic kinematic analysis of hyoid bone excursion, providing a versatile tool with high potential for clinical applications.


Deep Learning , Deglutition Disorders , Humans , Hyoid Bone/diagnostic imaging , Reproducibility of Results , Fluoroscopy/methods , Deglutition Disorders/diagnostic imaging , Deglutition Disorders/etiology , Deglutition
2.
Eur Spine J ; 31(8): 2092-2103, 2022 08.
Article En | MEDLINE | ID: mdl-35366104

PURPOSE: Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system. METHODS: We developed a DL model for automatic spinal curvature analysis of whole-spine lateral plain radiographs by using 1800 annotated images of various spinal disease etiologies. The DL model comprised a landmark localizer to detect 25 vertebral landmarks and a numerical algorithm for the generation of an individualized spinal sagittal curvature. The characteristics of the spinal curvature, including the IPs, APs, and curvature angle, could thus be analyzed using mathematical definitions. The localization error of each landmark was calculated from the predictions of 300 test images to evaluate the performance of the landmark localizer. The interrater reliability among a senior orthopedic surgeon, a radiologist, and the DL model was assessed using the intraclass correlation coefficient (ICC). RESULTS: The accuracy of the landmark localizer was within an acceptable range (median error: 1.7-4.1 mm), and the interrater reliabilities between the proposed DL model and each expert were good to excellent (all ICCs > 0.85) for the measurement of spinal curvature characteristics. CONCLUSION: The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.


Deep Learning , Spinal Curvatures , Artificial Intelligence , Humans , Reproducibility of Results , Spine/diagnostic imaging
3.
Sci Rep ; 12(1): 1354, 2022 01 25.
Article En | MEDLINE | ID: mdl-35079109

Aspiration due to dysphagia can lead to aspiration, which negatively impacts a patient's overall prognosis. Clinically, videofluoroscopic swallow study (VFSS) is considered the gold-standard instrument to determine physiological impairments of swallowing. According to previously published literature, kinematic analyses of VFSS might provide further information regarding aspiration detection. In this study, 449 files of VFSS studies from 232 patients were divided into three groups: normal, aspiration, and pyriform sinus stasis. Kinematic analyses and between-group comparison were conducted. Significant between-group differences were noted among parameters of anterior hyoid displacement, maximal hyoid displacement, and average velocity of hyoid movement. No significant difference was detected in superior hyoid displacement. Furthermore, receiver-operating characteristic (ROC) analyses of anterior hyoid displacement, velocity of anterior hyoid displacement, and average velocity of maximal hyoid displacement showed acceptable predictability for detecting aspiration. Using 33.0 mm/s as a cutoff value of average velocity of maximal hyoid displacement, the sensitivity of detecting the presence of aspiration was near 90%. The investigators therefore propose that the average velocity of maximal hyoid displacement may serve as a potential screening tool to detect aspiration.


Deglutition Disorders/physiopathology , Pyriform Sinus/physiopathology , Aged , Biomechanical Phenomena , Humans , Middle Aged , Retrospective Studies
4.
Sci Rep ; 11(1): 7618, 2021 04 07.
Article En | MEDLINE | ID: mdl-33828159

Human spinal balance assessment relies considerably on sagittal radiographic parameter measurement. Deep learning could be applied for automatic landmark detection and alignment analysis, with mild to moderate standard errors and favourable correlations with manual measurement. In this study, based on 2210 annotated images of various spinal disease aetiologies, we developed deep learning models capable of automatically locating 45 anatomic landmarks and subsequently generating 18 radiographic parameters on a whole-spine lateral radiograph. In the assessment of model performance, the localisation accuracy and learning speed were the highest for landmarks in the cervical area, followed by those in the lumbosacral, thoracic, and femoral areas. All the predicted radiographic parameters were significantly correlated with ground truth values (all p < 0.001). The human and artificial intelligence comparison revealed that the deep learning model was capable of matching the reliability of doctors for 15/18 of the parameters. The proposed automatic alignment analysis system was able to localise spinal anatomic landmarks with high accuracy and to generate various radiographic parameters with favourable correlations with manual measurements.


Anatomic Landmarks/diagnostic imaging , Image Processing, Computer-Assisted/methods , Spine/diagnostic imaging , Artificial Intelligence , Databases, Factual , Deep Learning , Humans , Radiography/methods , Reproducibility of Results
5.
IEEE Trans Med Imaging ; 39(5): 1380-1391, 2020 05.
Article En | MEDLINE | ID: mdl-31647422

Generalized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated. Contestants were given a training set with 30 images from seven organs with annotations of 21,623 individual nuclei. A test dataset with 14 images taken from seven organs, including two organs that did not appear in the training set was released without annotations. Entries were evaluated based on average aggregated Jaccard index (AJI) on the test set to prioritize accurate instance segmentation as opposed to mere semantic segmentation. More than half the teams that completed the challenge outperformed a previous baseline. Among the trends observed that contributed to increased accuracy were the use of color normalization as well as heavy data augmentation. Additionally, fully convolutional networks inspired by variants of U-Net, FCN, and Mask-RCNN were popularly used, typically based on ResNet or VGG base architectures. Watershed segmentation on predicted semantic segmentation maps was a popular post-processing strategy. Several of the top techniques compared favorably to an individual human annotator and can be used with confidence for nuclear morphometrics.


Image Processing, Computer-Assisted , Neural Networks, Computer , Cell Nucleus , Humans
6.
J Clin Med ; 8(11)2019 Nov 01.
Article En | MEDLINE | ID: mdl-31683913

We present an automated method for measuring the sagittal vertical axis (SVA) from lateral radiography of whole spine using a convolutional neural network for keypoint detection (ResUNet) with our improved localization method. The algorithm is robust to various clinical conditions, such as degenerative changes or deformities. The ResUNet was trained and evaluated on 990 standing lateral radiographs taken at Chang Gung Memorial Hospital, Linkou and performs SVA measurement with median absolute error of 1.183 ± 0.166 mm. The 5-mm detection rate of the C7 body and the sacrum are 91% and 87%, respectively. The SVA calculation takes approximately 0.2 s per image. The intra-class correlation coefficient of the SVA estimates between the algorithm and physicians of different years of experience ranges from 0.946 to 0.993, indicating an excellent consistency. The superior performance of the proposed method and its high consistency with physicians proved its usefulness for automatic measurement of SVA in clinical settings.

...