Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Opt Express ; 22(14): 16829-40, 2014 Jul 14.
Article En | MEDLINE | ID: mdl-25090500

Fiber orientation is an important structural property in paper and other fibrous materials. In this study we explore the relation between light scattering and in-plane fiber orientation in paper sheets. Light diffusion from a focused light source is simulated using a Monte Carlo technique where parameters describing the paper micro-structure were determined from 3D x-ray computed tomography images. Measurements and simulations on both spatially resolved reflectance and transmittance light scattering patterns show an elliptical shape where the main axis is aligned towards the fiber orientation. Good qualitative agreement was found at low intensities and the results indicate that fiber orientation in thin fiber-based materials can be determined using spatially resolved reflectance or transmittance.

2.
J Opt Soc Am A Opt Image Sci Vis ; 30(3): 455-61, 2013 Mar 01.
Article En | MEDLINE | ID: mdl-23456121

With increased resolution in x-ray computed tomography, refraction adds increasingly to the attenuation signal. Though potentially beneficial, the artifacts caused by refraction often need to be removed from the image. In this paper, we propose a postprocessing method, based on deconvolution, that is able to remove these artifacts after conventional reconstruction. This method poses two advantages over existing projection-based (preprocessing) phase-retrieval or phase-removal algorithms. First, evaluation of the parameters can be done very quickly, improving the overall speed of the method. Second, postprocessing methods can be applied when projection data is not available, which occurs in several commercial systems with closed software or when projection data has been deleted. It is shown that the proposed method performs comparably to state-of-the-art methods in terms of image quality.

...