Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770842

ABSTRACT

Studying larger nucleophiles in bimolecular nucleophilic substitution (SN2) reactions bridges the gap from simple model systems to those relevant to organic chemistry. Therefore, we investigated the reaction dynamics between the methoxy anion (CH3O-) and iodomethane (CH3I) in our crossed-beam setup combined with velocity map imaging at the four collision energies 0.4, 0.7, 1.2, and 1.6 eV. We find the two ionic products I- and CH2I-, which can be attributed to the SN2 and proton transfer channels, respectively. The proton transfer channel progresses in a previously observed fashion from indirect to direct scattering with increasing collision energy. Interestingly, the SN2 channel exhibits direct dynamics already at low collision energies. Both the direct stripping, leading to forward scattering, and the direct rebound mechanism, leading to backward scattering into high angles, are observed.

2.
J Phys Chem A ; 128(16): 3078-3085, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38597714

ABSTRACT

While neutral reactions involved in methane oxidation have been intensively studied, much less information is known about the reaction dynamics of the oxygen radical anion with methane. Here, we study the scattering dynamics of this anion-molecule reaction using crossed-beam velocity map imaging with deuterated methane. Differential scattering cross sections for the deuterium abstraction channel have been determined at relative collision energies between 0.2 and 1.5 eV and ab initio calculations of the important stationary points along the reaction pathway have been performed. At lower collision energies, direct backscattering and indirect complex-mediated reaction dynamics are observed, whereas at higher energies, sideways deuterium stripping dominates the reaction. Above 0.7 eV collision energy, a suppressed cross section is observed at low product ion velocities, which is likely caused by the endoergic pathway of combined deuteron/deuterium transfer, forming heavy water. The measured product internal energy is attributed mainly to the low-lying deformation and out-of-plane bending vibrations of the methyl radical product. The results are compared with a previous crossed-beam result for the reaction of oxygen anions with nondeuterated ̧methane and with the related neutral-neutral reactions, showing similar dynamics and qualitative agreement.

3.
Phys Rev Lett ; 131(18): 183002, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977634

ABSTRACT

Careful control of quantum states is a gateway to research in many areas of science such as quantum information, quantum-controlled chemistry, and astrophysical processes. Precise optical control of molecular ions remains a challenge due to the scarcity of suitable level schemes, and direct laser cooling has not yet been achieved for either positive or negative molecular ions. Using a cryogenic wire trap, we show how the internal quantum states of C_{2}^{-} anions can be manipulated using optical pumping and inelastic quenching collisions with H_{2} gas. We obtained optical pumping efficiencies of about 96% into the first vibrational level of C_{2}^{-} and determined the absolute inelastic rate coefficient from v=1 to 0 to be k_{q}=(3.2±0.2_{stat}±1.3_{sys})×10^{-13} cm^{3}/s at 20(3) K, over 3 orders of magnitude smaller than the capture limit. Reduced-dimensional quantum scattering calculations yield a small rate coefficient as well, but significantly larger than the experimental value. Using optical pumping and inelastic collisions, we also realized fluorescence imaging of negative molecular ions. Our work demonstrates high control of a cold ensemble of C_{2}^{-}, providing a solid foundation for future work on laser cooling of molecular ions.

4.
Phys Chem Chem Phys ; 25(44): 30330-30342, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37909202

ABSTRACT

We report quantum calculations involving the dynamics of rotational energy-transfer processes, by collision with He atoms in interstellar environments, of the title molecular species which share the presence of the CN backbone and are considered of importance in those environments. The latter structural feature is taken to be especially relevant for prebiotic chemistry and for its possible role in the processing of the heterocyclic rings of RNA and DNA nucleobases in the interstellar space. We carry out ab initio calculations of their interaction potentials with He atoms and further obtain the state-to-state rotationally inelastic cross sections and rate coefficients over the relevant range of temperatures. The similarities and differences between such species and other similar partners which have been already detected are analyzed and discussed for their significance on internal state populations in interstellar space for the two title molecular radicals.

5.
Chemphyschem ; 24(22): e202300248, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37585236

ABSTRACT

We present results of quantum structure calculations aimed at demonstrating the possible existence of dipole-bound states (DBS) for the anion C 5 N - ${{\rm{C}}_5 {\rm{N}}^ - }$ , a species already detected in the Interstellar medium (ISM). The positive demonstration of DBS existence using ab initio studies is an important step toward elucidating possible pathways for the formation of the more tightly bound valence bound states (VBS) in environments where free electrons from starlight ionization processes are known to be available to interact with the radical partner of the title molecule. Our current calculations show that such excited DBS states can exist in C 5 N - ${{\rm{C}}_5 {\rm{N}}^ - }$ , in agreement with what we had previously found for the smallercyanopolyyne in the series: the C 3 N - ${{\rm{C}}_3 {\rm{N}}^ - }$ anion. This system has a very weakly bound anion with binding energies of about 3 and 9 cm-1 for the 1 Σ + ${^1 \Sigma ^ + }$ and 3 Σ + ${^3 \Sigma ^ + }$ DBS, respectively.

6.
Phys Chem Chem Phys ; 25(28): 18711-18719, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37409391

ABSTRACT

The competition between the bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) reaction and their intrinsic reactivity is of key interest in organic chemistry. To investigate the effect of suppressing the E2 pathway on SN2 reactivity, we compared the reactions F- + CH3CH2I and F- + CF3CH2I. Differential cross-sections have been measured in a crossed-beam setup combined with velocity map imaging, giving insight into the underlying mechanisms of the individual pathways. Additionally, we employed a selected-ion flow tube to obtain reaction rates and high-level ab initio computations to characterize the different reaction pathways and product channels. The fluorination of the ß-carbon not only suppresses the E2-reaction but opens up additional channels involving the abstraction of fluorine. The overall SN2 reactivity is reduced compared to the non-fluorinated iodoethane. This reduction is presumably due to the competition with the highly reactive channels forming FHF- and CF2CI-.

8.
J Phys Chem Lett ; 14(24): 5524-5530, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37290113

ABSTRACT

The understanding of fundamental atomic-level processes often requires well-defined model systems. The oxygen atom transfer from CO2 to a transition metal cation in the gas phase presents such a model system. We investigate the reaction of Ta+ + CO2 for which the formation of TaO+ is highly efficient and attributed to multistate reactivity. Here, we study the atomistic dynamics of the oxygen atom transfer reaction by recording experimental energy and angle differential cross sections by crossed beam velocity map imaging supported by ab initio quantum chemical calculations. Product ion velocity distributions are dominated by signatures for indirect dynamics, despite the reaction being highly exothermic. Product kinetic energy distributions show little dependence on additional collision energy even with only four atoms involved, which hints at dynamical trapping behind a submerged barrier.

9.
J Phys Chem A ; 127(23): 4919-4926, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37265338

ABSTRACT

We report on the three-body reaction rate of C2- with H2 producing C2H- studied in a cryogenic 16-pole radio frequency ion trap. The reaction was measured in the temperature range from 10 to 28 K, where it was found to only take place via three-body collisions. The experimentally determined termolecular rate coefficient follows the form of a·(T/T0)b with T0 = 20 K, where a = 8.2(3) × 10-30 cm6/s and b = -0.82(12) denotes the temperature dependence. We additionally performed accurate ab initio calculations of the forces between the interacting partners and carried out variational transition state theory calculations, including tunneling through the barrier along the minimum energy path. We show that, while a simple classical model can generally predict the temperature dependence, the variational transition state theoretical calculations, including accurate quantum interactions, can explain the dominance of three-body effects in the molecular reaction mechanism and can reproduce the experimentally determined reaction coefficients, linking them to a temperature-dependent coupling parameter for energy dissipation within the transition complex.

10.
J Phys Chem A ; 127(26): 5565-5571, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37354118

ABSTRACT

We report on the reactive scattering of methyl iodide, CH3I, with atomic oxygen anions O-. This radical ion-molecule reaction can produce different ionic products depending on the angle of attack of the nucleophile O- on the target molecule. We present results on the backside and frontside attack of O- on CH3I, which can lead to I- and IO- products, respectively. We combine crossed-beam velocity map imaging with quantum chemical calculations to unravel the chemical reaction dynamics. Energy-dependent scattering experiments in the range of 0.3-2.0 eV relative collision energy revealed that three different reaction pathways can lead to I- products, making it the predominant observed product. Backside attack occurs via a hydrogen-bonded complex with observed indirect, forward, and sideways scattered iodide products. Halide abstraction via frontside attack produces IO-, which mainly shows isotropic and backward scattered products at low energies. IO- is observed to dissociate further to I- + O at a certain energy threshold and favors more direct dynamics at higher collision energies.

11.
Chemphyschem ; 24(15): e202300262, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37199236

ABSTRACT

We present infrared predissociation spectra of C2 N- (H2 ) and C 3 N- (H2 ) in the 300-1850 cm-1 range. Measurements were performed using the FELion cryogenic ion trap end user station at the Free Electron Lasers for Infrared eXperiments (FELIX) laboratory. For C2 N- (H2 ), we detected the CCN bending and CC-N stretching vibrations. For the C3 N- (H2 ) system, we detected the CCN bending, the CC-CN stretching, and multiple overtones and/or combination bands. The assignment and interpretation of the presented experimental spectra is validated by calculations of anharmonic spectra within the vibrational configuration interaction (VCI) approach, based on potential energy surfaces calculated at explicitly correlated coupled cluster theory (CCSD(T)-F12/cc-pVTZ-F12). The H2 tag acts as an innocent spectator, not significantly affecting the C2,3 N- bending and stretching mode positions. The recorded infrared predissociation spectra can thus be used as a proxy for the vibrational spectra of the bare anions.

12.
Nature ; 615(7952): 425-429, 2023 03.
Article in English | MEDLINE | ID: mdl-36859549

ABSTRACT

Quantum tunnelling reactions play an important role in chemistry when classical pathways are energetically forbidden1, be it in gas-phase reactions, surface diffusion or liquid-phase chemistry. In general, such tunnelling reactions are challenging to calculate theoretically, given the high dimensionality of the quantum dynamics, and also very difficult to identify experimentally2-4. Hydrogenic systems, however, allow for accurate first-principles calculations. In this way the rate of the gas-phase proton-transfer tunnelling reaction of hydrogen molecules with deuterium anions, H2 + D- → H- + HD, has been calculated5, but has so far lacked experimental verification. Here we present high-sensitivity measurements of the reaction rate carried out in a cryogenic 22-pole ion trap. We observe an extremely low rate constant of (5.2 ± 1.6) × 10-20 cm3 s-1. This measured value agrees with quantum tunnelling calculations, serving as a benchmark for molecular theory and advancing the understanding of fundamental collision processes. A deviation of the reaction rate from linear scaling, which is observed at high H2 densities, can be traced back to previously unobserved heating dynamics in radiofrequency ion traps.

13.
J Phys Chem A ; 127(3): 765-774, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36598007

ABSTRACT

We present accurate ab initio calculations on several properties of a gas-phase system of interest in the interstellar medium (ISM), where the title molecular anion has been often surmised but not yet confirmed by observations. The CH-3Σ+ constitutes the smallest term in the series of longer anionic polyynes which have been observed in the ISM (e.g., C4H- and several others). Hence, its dynamical behavior in collision with He atoms, one of the most abundant atoms in that environment, can provide quantitative indicators on the changes which can occur in the rotational state population of the title anion when driven by this collision dynamics. We therefore report an accurate evaluation of the full potential energy surface (PES) which acts between the molecular anion in its ground vibrational state and the He atom. The relevant inelastic scattering cross sections and the corresponding inelastic rate coefficients are then computed within a quantum treatment of the collisions. We find that the fairly small values of the final inelastic rate coefficients indicate state-changing processes by collisions to be inefficient paths for modifying the rotational state populations of this anion and therefore to aid its possible observation from direct radiative emission in the microwave region.

14.
Phys Chem Chem Phys ; 25(5): 4005-4014, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36649119

ABSTRACT

Regarding OH- + CH3I, several studies have focused on the dynamics of the reaction. Here, high-level quasi-classical trajectory simulations are carried out at four different collision energies on our recently developed potential energy surface. In all, more than half a million trajectories are performed, and for the first time, the detailed quasi-classical trajectory results are compared with the reanalysed crossed-beam ion imaging experiments. Concerning the previously reported direct dynamics study of OH- + CH3I, a better agreement can be obtained between the revised experiment and our novel theoretical results. Furthermore, in the present work, the benchmark geometries, frequencies and relative energies of the stationary points are also determined for the OH- + CH3I proton-abstraction channel along with the earlier characterized SN2 channel.

15.
J Phys Chem A ; 126(50): 9408-9413, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36512691

ABSTRACT

We report on reactive scattering studies of the proton transfer and combined hydrogen/proton transfer in the O- + CH3I reaction. We combine state-of-the-art crossed-beam velocity map imaging and quantum chemistry calculations to understand the dynamics for the formations of the CH2I- + OH and CHI- + H2O products. The experimental velocity- and angle-differential cross section show for both products and at all collision energies (between 0.3 and 2.0 eV) that the product ions are predominantly forward scattered. For the CHI- + H2O channel, the data show lower product velocities, indicative of higher internal excitation, than in the case of single proton transfer. Furthermore, our results suggest that the combined hydrogen/proton transfer proceeds via a two-step process: In the first step, O- abstracts one H atom to form OH-, and then the transient OH- removes an additional proton from CH2I to form the energetically stable H2O coproduct.

16.
J Chem Phys ; 156(9): 094304, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35259898

ABSTRACT

The detachment loss dynamics between rubidium atoms (Rb) and oxygen anions (O-) are studied in a hybrid atom-ion trap. The amount of excited rubidium present in the atomic ensemble is actively controlled, providing a tool to tune the electronic quantum state of the system and, thus, the anion-neutral interaction dynamics. For a ground state Rb interacting with O-, the detachment induced loss rate is consistent with zero, while the excited state Rb yields a significantly higher loss rate. The results are interpreted via ab initio potential energy curves and compared to the previously studied Rb-OH- system, where an associative electronic detachment reactive loss process hinders the sympathetic cooling of the anion. This implies that with the loss channels closed for ground-state Rb and O- anion, this system provides a platform to observe sympathetic cooling of an anion with an ultracold heavy buffer gas.

17.
Nat Commun ; 13(1): 818, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35145072

ABSTRACT

Associative electronic detachment (AED) between anions and neutral atoms leads to the detachment of the anion's electron resulting in the formation of a neutral molecule. It plays a key role in chemical reaction networks, like the interstellar medium, the Earth's ionosphere and biochemical processes. Here, a class of AED involving a closed-shell anion (OH-) and alkali atoms (rubidium) is investigated by precisely controlling the fraction of electronically excited rubidium. Reaction with the ground state atom gives rise to a stable intermediate complex with an electron solely bound via dipolar forces. The stability of the complex is governed by the subtle interplay of diabatic and adiabatic couplings into the autodetachment manifold. The measured rate coefficients are in good agreement with ab initio calculations, revealing pronounced steric effects. For excited state rubidium, however, a lower reaction rate is observed, indicating dynamical stabilization processes suppressing the coupling into the autodetachment region. Our work provides a stringent test of ab initio calculations on anion-neutral collisions and constitutes a generic, conceptual framework for understanding electronic state dependent dynamics in AEDs.

18.
J Phys Chem A ; 125(39): 8581-8586, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34581582

ABSTRACT

Three-body reaction rates of Cl- with H2 to form the weakly bound complex Cl-(H2) are measured between 10 and 26 K in a linear radio-frequency wire trap. Formation of larger clusters of the form Cl-(H2)2 are also observed. The three-body (or termolecular) rate coefficients follow the form aT-1, with a = 1.12(2) × 10-29 cm6 K s-1. Reverse reactions to repopulate the Cl- parent ion were measured, even though the binding energy of the complex makes bimolecular dissociative collisions energetically inaccessible at low temperatures. The back-reaction was found to be proportional to the cube of the hydrogen density, suggesting that the dissociation mechanism depends on multiple collisions. Comparisons of the rate coefficients measured in a 16-pole wire trap and a 22-pole trap demonstrate significantly lower ion temperatures in the wire trap.

19.
Phys Rev Lett ; 127(4): 043001, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34355920

ABSTRACT

Threshold photodetachment spectroscopy of the molecular ion C_{3}N^{-} has been performed at both 16(1) and 295(2) K in a 22-pole ion trap. The 295(2) K spectrum shows a large increase in the cross section with an onset about 200 cm^{-1} below threshold, which is explained by significant vibrational excitation of the trapped ions at room temperature. This excitation disappears at cryogenic temperatures leading to an almost steplike onset of the cross section at threshold, which cannot be adequately described with a Wigner threshold law. Instead, we show that the model developed by O'Malley for photodetachment from neutrals with large permanent dipoles [Phys. Rev. 137, A1668 (1965)PHRVAO0031-899X10.1103/PhysRev.137.A1668] fits very well to the data. A high-resolution scan of the threshold region yields additional features, which we assign to the rotational P and R branches of an electronic transition to a dipole-bound state with ^{1}Σ^{+} symmetry. This state is found 2(1) cm^{-1} below threshold in very good agreement with a recent computational prediction. We furthermore refine the value of the electron affinity of C_{3}N to be 34 727(1) cm^{-1}.

20.
Nat Chem ; 13(10): 977-981, 2021 10.
Article in English | MEDLINE | ID: mdl-34373599

ABSTRACT

Chemical reaction dynamics are studied to monitor and understand the concerted motion of several atoms while they rearrange from reactants to products. When the number of atoms involved increases, the number of pathways, transition states and product channels also increases and rapidly presents a challenge to experiment and theory. Here we disentangle the dynamics of the competition between bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) in the polyatomic reaction F- + CH3CH2Cl. We find quantitative agreement for the energy- and angle-differential reactive scattering cross-sections between ion-imaging experiments and quasi-classical trajectory simulations on a 21-dimensional potential energy hypersurface. The anti-E2 pathway is most important, but the SN2 pathway becomes more relevant as the collision energy is increased. In both cases the reaction is dominated by direct dynamics. Our study presents atomic-level dynamics of a major benchmark reaction in physical organic chemistry, thereby pushing the number of atoms for detailed reaction dynamics studies to a size that allows applications in many areas of complex chemical networks and environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...