Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 30(5): 1897-1912, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34990810

ABSTRACT

RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Liposomes , Mice , Nanoparticles , RNA, Messenger , Rats , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Tissue Distribution
2.
Vaccine ; 40(11): 1634-1642, 2022 03 08.
Article in English | MEDLINE | ID: mdl-33678455

ABSTRACT

Healthcare institutions with mandatory influenza vaccination policies have over 90% vaccination rates among healthcare workers (HCWs) resulting in a population that has received the influenza vaccine in many, consecutive years. This study explored the impact of sex and other host factors in pre- and post-vaccination neutralizing antibody (nAb) titers and seroconversion against the H1N1 and H3N2 influenza A viruses (IAVs) among HCWs enrolled into a cross-sectional serosurvey during the annual Johns Hopkins Hospital employee vaccination campaign in the 2017-18 and 2018-19 seasons. The study enrolled 111 participants (male = 38, female = 73) in 2017-18 and 163 (male = 44, female = 119) in 2018-19. Serum samples were collected immediately prior to vaccination and approximately 28 days later and nAb titers to vaccine strains determined. An intersectional approach was used to disaggregate the combined effects of sex with age and body mass index (BMI) in the nAb response. Differences between the pre- or post-vaccination geometric mean nAb titers between male and female HCWs were not observed. Male HCWs were 2.86 times more likely to seroconvert compared to female HCWs in 2017-2018, but the same trend was not observed in the following year. When data were disaggregated by age and sex, older female HCWs had higher H1N1 pre- and post-vaccination nAb titers compared to male HCWs in the same age group for both vaccination campaign seasons. In both years, the decline in H3N2 pre-vaccination titers with increasing BMI was greater in female than male HCW. The sex-specific effects of age and BMI on nAb responses to seasonal influenza vaccines require greater consideration.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Viral , Antibody Formation , Body Mass Index , Cross-Sectional Studies , Female , Health Personnel , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Male , Seasons , Vaccination/methods
3.
J Infect Dis ; 222(8): 1371-1382, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32496543

ABSTRACT

BACKGROUND: An antigenic mismatch between the vaccine and circulating H3N2 strains was hypothesized to contribute to the severity of the 2017-2018 season in North America. METHODS: Serum and nasal washes were collected from influenza positive and negative patients during the 2017-2018 season to determine neutralizing antibody (nAb) titers and for influenza virus sequencing, respectively. RESULTS: The circulating and vaccine H3N2 virus strains were different clades, with the vaccine strain being clade 3C.2a and the circulating viruses being 3C.2a2 or 3C.3a. At enrollment, both the H3N2 negative and positive patients had greater nAb titers to the egg-adapted vaccine virus compared to the cell-grown vaccine but the H3N2-negative population had significantly greater titers to the circulating 3C.2a2. Among H3N2-positive patients, vaccination, younger age, and female sex were associated with greater nAb responses to the egg-adapted vaccine H3N2 virus but not to the cell-grown vaccine or circulating viruses. CONCLUSIONS: For the 2017-2018 circulating viruses, mutations introduced by egg adaptation decreased vaccine efficacy. No increased protection was afforded by vaccination, younger age, or female sex against 2017-2018 circulating H3N2 viruses.


Subject(s)
Antibodies, Neutralizing/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Influenza, Human/virology , Male , Middle Aged , Mutation , Sex Factors , United States/epidemiology , Vaccination , Young Adult
4.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30867314

ABSTRACT

Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi membranes, and has cation channel activity in vitro The E protein from avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system, which require residues in the HD. Mutation of the HD of IBV E in a recombinant virus background results in impaired growth kinetics, impaired release of infectious virions, accumulation of IBV spike (S) protein on the plasma membrane compared to wild-type (WT) IBV-infected cells, and aberrant cleavage of IBV S on virions. We previously reported the formation of two distinct oligomeric pools of IBV E in transfected and infected cells. Disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. Here, we present evidence suggesting that the monomeric form of IBV E correlates with an increased Golgi luminal pH. Infection with IBV or expression of IBV E induces neutralization of Golgi pH, promoting a model in which IBV E alters the secretory pathway through interaction with host cell factors, protecting IBV S from premature cleavage and leading to the efficient release of infectious virus from the cells. This is the first demonstration of a coronavirus-induced alteration in the microenvironment of the secretory pathway.IMPORTANCE Coronaviruses are important human pathogens with significant zoonotic potential. Progress has been made toward identifying potential vaccine candidates for highly pathogenic human CoVs, including the use of attenuated viruses that lack the CoV E protein or express E mutants. However, no approved vaccines or antiviral therapeutics exist. Understanding the role of the CoV E protein in virus assembly and release is thus an important prerequisite for potential vaccines as well as in identifying novel antiviral therapeutics.


Subject(s)
Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Animals , Bronchitis/immunology , Bronchitis/virology , Cell Membrane/metabolism , Chlorocebus aethiops , Coronavirus/pathogenicity , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Golgi Apparatus/physiology , HeLa Cells , Humans , Hydrogen-Ion Concentration , Infectious bronchitis virus/immunology , Secretory Pathway , Vero Cells , Viral Envelope Proteins/physiology , Virion/metabolism , Virus Assembly , Virus Diseases/metabolism
5.
J Virol ; 89(18): 9313-23, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26136577

ABSTRACT

UNLABELLED: Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. IMPORTANCE: CoVs are important human pathogens with significant zoonotic potential, as demonstrated by the emergence of SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. Progress has been made toward identifying potential vaccine candidates in mouse models of CoV infection, including the use of attenuated viruses that lack the CoV E protein or express E-protein mutants. However, no approved vaccines or antiviral therapeutics exist. We previously reported that the hydrophobic domain of the IBV E protein, a putative viroporin, causes disruption of the mammalian secretory pathway when exogenously expressed in cells. Understanding the mechanism of this disruption could lead to the identification of novel antiviral therapeutics. Here, we present biochemical evidence for two distinct oligomeric forms of IBV E, one essential for assembly and the other with a role in disruption of the secretory pathway. Discovery of two forms of CoV E protein will provide additional targets for antiviral therapeutics.


Subject(s)
Protein Multimerization/physiology , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Envelope Proteins/metabolism , Virus Assembly/physiology , Animals , Chlorocebus aethiops , HeLa Cells , Humans , Mice , Protein Structure, Quaternary , Severe Acute Respiratory Syndrome/genetics , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viroporin Proteins
6.
J Cell Sci ; 127(Pt 18): 3956-69, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25052089

ABSTRACT

Emerin is a conserved membrane component of nuclear lamina structure. Here, we report an advance in understanding the molecular basis of emerin function: intermolecular emerin-emerin association. There were two modes: one mediated by association of residues 170-220 in one emerin molecule to residues 170-220 in another, and the second involving residues 170-220 and 1-132. Deletion analysis showed residues 187-220 contain a positive element essential for intermolecular association in cells. By contrast, deletion of residues 168-186 inactivated a proposed negative element, required to limit or control association. Association of GFP-emerin with nuclear BAF in cells required the LEM domain (residues 1-47) and the positive element. Emerin peptide arrays revealed direct binding of residues 170-220 to residues 206-225 (the proposed positive element), residues 147-174 (particularly P(153)MYGRDSAYQSITHYRP(169)) and the LEM domain. Emerin residues 1-132 and 159-220 were each sufficient to bind lamin A or B1 tails in vitro, identifying two independent regions of molecular contact with lamins. These results, and predicted emerin intrinsic disorder, support the hypothesis that there are multiple 'backbone' and LEM-domain configurations in a proposed intermolecular emerin network at the nuclear envelope.


Subject(s)
DNA-Binding Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nuclear Lamina/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Humans , Membrane Proteins/genetics , Molecular Sequence Data , Nuclear Lamina/chemistry , Nuclear Lamina/genetics , Nuclear Proteins/genetics , Protein Binding
7.
Mol Biol Cell ; 25(1): 1-16, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24196836

ABSTRACT

The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure-function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5 cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase.


Subject(s)
Cell Nucleus/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Nuclear Localization Signals , Phosphorylation , Protein Binding , Protein Transport , Proteolysis
8.
BMC Biol ; 9: 74, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22034919

ABSTRACT

BACKGROUND: In the yeast Saccharomyces cerevisiae, the essential small ubiquitin-like modifier (SUMO) protease Ulp1 is responsible for both removing SUMO/Smt3 from specific target proteins and for processing precursor SUMO into its conjugation-competent form. Ulp1 localizes predominantly to nuclear pore complexes but has also been shown to deconjugate sumoylated septins at the bud-neck of dividing cells. How Ulp1 is directed to bud-neck localized septins and other cytoplasmic deconjugation targets is not well understood. RESULTS: Using a structure/function approach, we set out to elucidate features of Ulp1 that are required for substrate targeting. To aid our studies, we took advantage of a catalytically inactive mutant of Ulp1 that is greatly enriched at the septin ring of dividing yeast cells. We found that the localization of Ulp1 to the septins requires both SUMO and specific structural features of Ulp1's catalytic domain. Our analysis identified a 218-amino acid, substrate-trapping mutant of the catalytic domain of Ulp1, Ulp1(3)(C580S), that is necessary and sufficient for septin localization. We also used the targeting and SUMO-binding properties of Ulp1(3)(C580S) to purify Smt3-modified proteins from cell extracts. CONCLUSIONS: Our study provides novel insights into how the Ulp1 SUMO protease is actively targeted to its substrates in vivo and in vitro. Furthermore, we found that a substrate-trapping Ulp1(3)(C580S) interacts robustly with human SUMO1, SUMO2 and SUMO2 chains, making it a potentially useful tool for the analysis and purification of SUMO-modified proteins.


Subject(s)
Cysteine Endopeptidases/metabolism , Saccharomyces cerevisiae/enzymology , Small Ubiquitin-Related Modifier Proteins/metabolism , Biocatalysis , Catalytic Domain , Cysteine Endopeptidases/chemistry , Membrane Transport Proteins/metabolism , Mutant Proteins/metabolism , Nuclear Envelope/metabolism , Protein Binding , Protein Transport , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/metabolism , Septins/metabolism , Structure-Activity Relationship , Substrate Specificity , Sumoylation , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...