Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Magn Reson Imaging ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838352

ABSTRACT

This article reviews the synergistic application of positron emission tomography-magnetic resonance imaging (PET-MRI) in neuroscience with relevance for psychiatry, particularly examining neurotransmission, epigenetics, and dynamic imaging methodologies. We begin by discussing the complementary insights that PET and MRI modalities provide into neuroreceptor systems, with a focus on dopamine, opioids, and serotonin receptors, and their implications for understanding and treating psychiatric disorders. We further highlight recent PET-MRI studies using a radioligand that enables the quantification of epigenetic enzymes, specifically histone deacetylases, in the brain in vivo. Imaging epigenetics is used to exemplify the impact the quantification of novel molecular targets may have, including new treatment approaches for psychiatric disorders. Finally, we discuss innovative designs involving functional PET using [18F]FDG (fPET-FDG), which provides detailed information regarding dynamic changes in glucose metabolism. Concurrent acquisitions of fPET-FDG and functional MRI provide a time-resolved approach to studying brain function, yielding simultaneous metabolic and hemodynamic information and thereby opening new avenues for psychiatric research. Collectively, the review underscores the potential of a multimodal PET-MRI approach to advance our understanding of brain structure and function in health and disease, which could improve clinical care based on objective neurobiological features and treatment response monitoring. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

2.
Adv Sci (Weinh) ; : e2309021, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923244

ABSTRACT

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic stratagem for neurodegenerative disorders, particularly Alzheimer's disease (AD). A positron emission tomography (PET) probe enabling brain RIPK1 imaging can provide a powerful tool to unveil the neuropathology associated with RIPK1. Herein, the development of a new PET radioligand, [11C]CNY-10 is reported, which may enable brain RIPK1 imaging. [11C]CNY-10 is radiosynthesized with a high radiochemical yield (41.8%) and molar activity (305 GBq/µmol). [11C]CNY-10 is characterized by PET imaging in rodents and a non-human primate, demonstrating good brain penetration, binding specificity, and a suitable clearance kinetic profile. It is performed autoradiography of [11C]CNY-10 in human AD and healthy control postmortem brain tissues, which shows strong radiosignal in AD brains higher than healthy controls. Subsequently, it is conducted further characterization of RIPK1 in AD using [11C]CNY-10-based PET studies in combination with immunohistochemistry leveraging the 5xFAD mouse model. It is found that AD mice revealed RIPK1 brain signal significantly higher than WT control mice and that RIPK1 is closely related to amyloid plaques in the brain. The studies enable further translational studies of [11C]CNY-10 for AD and potentially other RIPK1-related human studies.

3.
ACS Chem Neurosci ; 15(14): 2654-2661, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38916752

ABSTRACT

The extent of changes in functional connectivity (FC) within functional networks as a common feature across hallucinogenic drug classes is under-explored. This work utilized fMRI to assess the dissociative hallucinogens Psilocybin, a classical serotonergic psychedelic, and Salvinorin-A, a kappa-opioid receptor (KOR) agonist, on resting-state FC in nonhuman primates. We highlight overlapping and differing influence of these substances on FC relative to the thalamus, claustrum, prefrontal cortex (PFC), default mode network (DMN), and DMN subcomponents. Analysis was conducted on a within-subject basis. Findings support the cortico-claustro-cortical network model for probing functional effects of hallucinogens regardless of serotonergic potential, with a potential key paradigm centered around the claustrum, PFC, anterior cingulate cortices (ACC), and angular gyrus relationship. Thalamo-cortical networks are implicated but appear dependent on 5-HT2AR activation. Acute desynchronization relative to the DMN for both drugs was also shown. Our findings provide a framework to understand broader mechanisms at which hallucinogens in differing classes may impact subjects regardless of the target receptor.


Subject(s)
Diterpenes, Clerodane , Hallucinogens , Magnetic Resonance Imaging , Psilocybin , Hallucinogens/pharmacology , Diterpenes, Clerodane/pharmacology , Animals , Psilocybin/pharmacology , Male , Magnetic Resonance Imaging/methods , Prefrontal Cortex/drug effects , Brain/drug effects , Brain/metabolism , Macaca mulatta , Default Mode Network/drug effects , Thalamus/drug effects , Thalamus/diagnostic imaging , Thalamus/metabolism , Neural Pathways/drug effects , Nerve Net/drug effects , Nerve Net/diagnostic imaging
4.
ACS Cent Sci ; 10(5): 1105-1114, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799654

ABSTRACT

Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement, functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem samples from Huntington's disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2 holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human PET.

5.
Pain ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776171

ABSTRACT

ABSTRACT: Epigenetics has gained considerable interest as potential mediators of molecular alterations that could underlie the prolonged sensitization of nociceptors, neurons, and glia in response to various environmental stimuli. Histone acetylation and deacetylation, key processes in modulating chromatin, influence gene expression; elevated histone acetylation enhances transcriptional activity, whereas decreased acetylation leads to DNA condensation and gene repression. Altered levels of histone deacetylase (HDAC) have been detected in various animal pain models, and HDAC inhibitors have demonstrated analgesic effects in these models, indicating HDACs' involvement in chronic pain pathways. However, animal studies have predominantly examined epigenetic modulation within the spinal cord after pain induction, which may not fully reflect the complexity of chronic pain in humans. Moreover, methodological limitations have previously impeded an in-depth study of epigenetic changes in the human brain. In this study, we employed [11C]Martinostat, an HDAC-selective radiotracer, positron emission tomography to assess HDAC availability in the brains of 23 patients with chronic low back pain (cLBP) and 11 age-matched and sex-matched controls. Our data revealed a significant reduction of [11C]Martinostat binding in several brain regions associated with pain processing in patients with cLBP relative to controls, highlighting the promising potential of targeting HDAC modulation as a therapeutic strategy for cLBP.

6.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38607332

ABSTRACT

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, sigma , Sigma-1 Receptor , Receptors, sigma/metabolism , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Male , Molecular Imaging/methods , Halogenation , Tissue Distribution , Humans
7.
Bioorg Chem ; 146: 107279, 2024 May.
Article in English | MEDLINE | ID: mdl-38513325

ABSTRACT

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Subject(s)
Brain , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Radiopharmaceuticals/chemistry , Radiochemistry , Pyridines/metabolism
8.
J Med Chem ; 67(1): 555-571, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38150705

ABSTRACT

The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound 8 as a potent (IC50: 0.55 ± 0.16 µM), selective, and direct NLRP3 inhibitor. Positron emission tomography (PET) imaging studies of [11C]8 demonstrated its rapid and high brain uptake as well as fast washout in mice and rhesus macaque. Notably, plasma kinetic analysis of this radiotracer from the PET/magnetic resonance imaging studies in rhesus macaque suggested radiometabolic stability. Collectively, our data not only encourage further studies of this lead compound but also warrant further optimization to generate additional novel NLRP3 inhibitors and suitable central nervous system PET radioligands with translational promise.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Humans , Macaca mulatta , Kinetics , Positron-Emission Tomography
9.
ACS Omega ; 8(48): 45438-45446, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075761

ABSTRACT

This study aimed to develop a template-based attenuation correction (AC) for the nonhuman primate (NHP) brain. We evaluated the effects of AC on positron emission tomography (PET) data quantification with two experimental paradigms by comparing the quantitative outcomes obtained using a segmentation-based AC versus template-based AC. Population-based atlas was generated from ten adult rhesus macaques. Bolus experiments using [18F]PF-06455943 and a bolus-infusion experiment using [11C]OMAR were performed on a 3T Siemens PET/magnetic resonance-imaging (MRI). PET data were reconstructed with either µ map obtained from the segmentation-based AC or template-based AC. The standard uptake value (SUV), volume of distribution (VT), or percentage occupancy of rimonabant were calculated for [18F]PF-06455943 and [11C]OMAR PET, respectively. The leave-one-out cross-validation showed that the absolute percentage differences were 2.54 ± 2.86% for all region of interests. The segmentation-based AC had a lower SUV and VT (∼10%) of [18F]PF-06455943 than the template-based method. The estimated occupancy was higher in the template-based method compared to the segmentation-based AC in the bolus-infusion study. However, future studies may be needed if a different reference tissue is selected for data quantification. Our template-based AC approach was successfully developed and applied to the NHP brain. One limitation of this study was that validation was performed by comparing two different MR-based AC approaches without validating against AC methods based on computed tomography (CT).

10.
Neuroimage ; 283: 120416, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866759

ABSTRACT

While all reversible receptor-targeting radioligands for positron emission tomography (PET) can be displaced by competition with an antagonist at the receptor, many radiotracers show limited occupancies using agonists even at high doses. [11C]Raclopride, a D2/D3 receptor radiotracer with rapid kinetics, can identify the direction of changes in the neurotransmitter dopamine, but quantitative interpretation of the relationship between dopamine levels and radiotracer binding has proven elusive. Agonist-induced receptor desensitization and internalization, a homeostatic mechanism to downregulate neurotransmitter-mediated function, can shift radioligand-receptor binding affinity and confound PET interpretations of receptor occupancy. In this study, we compared occupancies induced by amphetamine (AMP) in drug-naive wild-type (WT) and internalization-compromised ß-arrestin-2 knockout (KO) mice using a within-scan drug infusion to modulate the kinetics of [11C]raclopride. We additionally performed studies at 3 h following AMP pretreatment, with the hypothesis that receptor internalization should markedly attenuate occupancy on the second challenge, because dopamine cannot access internalized receptors. Without prior AMP treatment, WT mice exhibited somewhat larger binding potential than KO mice but similar AMP-induced occupancy. At 3 h after AMP treatment, WT mice exhibited binding potentials that were 15 % lower than KO mice. At this time point, occupancy was preserved in KO mice but suppressed by 60 % in WT animals, consistent with a model in which most receptors contributing to binding potential in WT animals were not functional. These results demonstrate that arrestin-mediated receptor desensitization and internalization produce large effects in PET [11C]raclopride occupancy studies using agonist challenges.


Subject(s)
Dopamine , Receptors, Dopamine D3 , Mice , Animals , Receptors, Dopamine D3/metabolism , Raclopride/pharmacology , Raclopride/metabolism , Dopamine/metabolism , Dopamine Antagonists , Arrestin/metabolism , Positron-Emission Tomography/methods , Dopamine Agonists/pharmacology , Amphetamines , Amphetamine/pharmacology
11.
ACS Chem Neurosci ; 14(3): 370-377, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36630128

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the common causes of inherited Parkinson's disease (PD) and emerged as a causative PD gene. Particularly, LRRK2-Gly2019Ser mutation was reported to alter the early phase of neuronal differentiation, increasing cell death. Selective inhibitors of LRRK2 kinase activity were considered as a promising therapeutic target for PD treatment. However, the development of effective brain-penetrant LRRK2 inhibitors remains challenging. Recently, we have developed a novel positron emission tomography (PET) radioligand for LRRK2 imaging and demonstrated preferable tracer properties in rodents. Herein, we evaluate [18F]PF-06455943 quantification methods in the nonhuman primate (NHP) brain using full kinetic modeling with radiometabolite-corrected arterial blood samples, and homologous blocking with two doses (0.1 and 0.3 mg/kg). Kinetic analysis results demonstrated that a two-tissue compartmental model and a Logan graphical analysis are appropriate for [18F]PF-06455943 PET quantification. In addition, we observed that total distribution volume (VT) values can be reliably estimated with as short as a 30 min scan duration. Homologous blocking studies confirmed the specific binding of [18F]PF-06455943 and revealed that the nonradioactive mass of PF-06455943 achieved 45-55% of VT displacement in the whole brain. This work supports the translation of [18F]PF-06455943 PET imaging for the human brain and target occupancy studies.


Subject(s)
Brain , Positron-Emission Tomography , Animals , Humans , Brain/diagnostic imaging , Brain/metabolism , Kinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Positron-Emission Tomography/methods , Primates/metabolism , Radiopharmaceuticals/chemistry
12.
Pain Med ; 24(Suppl 1): S3-S12, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36622041

ABSTRACT

In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death. To combat the rise of opioid-related deaths, the National Institutes of Health (NIH) initiated the Helping to End Addiction Long-TermSM (HEAL) initiative, whose goal is to address the causes and treatment of opioid use disorder while also seeking to better understand, diagnose, and treat chronic pain. The NIH Back Pain Consortium (BACPAC) Research Program, a network of 14 funded entities, was launched as a part of the HEAL initiative to help address limitations surrounding the diagnosis and treatment of cLBP. This paper provides an overview of the BACPAC research program's goals and overall structure, and describes the harmonization efforts across the consortium, define its research agenda, and develop a collaborative project which utilizes the strengths of the network. The purpose of this paper is to serve as a blueprint for other consortia tasked with the advancement of pain related science.


Subject(s)
Chronic Pain , Low Back Pain , Opioid-Related Disorders , Adult , Humans , Research Design , Analgesics, Opioid/therapeutic use , Advisory Committees , Pain Measurement/methods , Chronic Pain/epidemiology , Low Back Pain/diagnosis , Low Back Pain/therapy , Opioid-Related Disorders/epidemiology , Opioid-Related Disorders/therapy
13.
J Med Chem ; 66(3): 1712-1724, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36256881

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been demonstrated to be closely involved in the pathogenesis of Parkinson's disease (PD), and pharmacological blockade of LRRK2 represents a new opportunity for therapeutical treatment of PD and other related neurodegenerative conditions. The development of an LRRK2-specific positron emission tomography (PET) ligand would enable a target occupancy study in vivo and greatly facilitate LRRK2 drug discovery and clinical translation as well as provide a molecular imaging tool for studying physiopathological changes in neurodegenerative diseases. In this work, we present the design and development of compound 8 (PF-06455943) as a promising PET radioligand through a PET-specific structure-activity relationship optimization, followed by comprehensive pharmacology and ADME/neuroPK characterization. Following an efficient 18F-labeling method, we have confirmed high brain penetration of [18F]8 in nonhuman primates (NHPs) and validated its specific binding in vitro by autoradiography in postmortem NHP brain tissues and in vivo by PET imaging studies.


Subject(s)
Parkinson Disease , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Leucine/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Ligands , Parkinson Disease/metabolism , Positron-Emission Tomography/methods
14.
Acta Pharm Sin B ; 12(10): 3891-3904, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213537

ABSTRACT

Although the epigenetic regulatory protein histone deacetylase 6 (HDAC6) has been recently implicated in the etiology of Alzheimer's disease (AD), little is known about the role of HDAC6 in the etiopathogenesis of AD and whether HDAC6 can be a potential therapeutic target for AD. Here, we performed positron emission tomography (PET) imaging in combination with histopathological analysis to better understand the underlying pathomechanisms of HDAC6 in AD. We first developed [18F]PB118 which was demonstrated as a valid HDAC6 radioligand with excellent brain penetration and high specificity to HDAC6. PET studies of [18F]PB118 in 5xFAD mice showed significantly increased radioactivity in the brain compared to WT animals, with more pronounced changes identified in the cortex and hippocampus. The translatability of this radiotracer for AD in a potential human use was supported by additional studies, including similar uptake profiles in non-human primates, an increase of HDAC6 in AD-related human postmortem hippocampal tissues by Western blotting protein analysis, and our ex vivo histopathological analysis of HDAC6 in postmortem brain tissues of our animals. Collectively, our findings show that HDAC6 may lead to AD by mechanisms that tend to affect brain regions particularly susceptible to AD through an association with amyloid pathology.

16.
Chem Commun (Camb) ; 58(69): 9654-9657, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35943085

ABSTRACT

The two tandem bromodomains of BET (bromodomain and extra-terminal domain) proteins (BD1 and BD2) may play distinct and critical roles in neurological diseases. To better understand the underlying mechanisms of the BD1 bromodomain and facilitate brain permeable domain-selective inhibitor development, we describe here the development of the first BET BD1 positron emission tomography (PET) radioligand [11C]1a. Compound 1a was tested to possess potent binding affinities and good selectivity (>20-fold over BD2) for BD1 bromodomains of BRD2 (Kd = 25 nM), BRD3 (Kd = 24 nM), and BRD4 (Kd = 19 nM). Physicochemical characterization of 1a indicated the brain permeability and specific binding. [11C]1a was radiosynthesized in a good radiochemical yield (RCY: 25-30%) and molar activity (258 GBq µmol-1). The PET imaging studies of [11C]1a in mice showed moderate brain uptake (with peak SUV = 0.7) and binding specificity. Furthermore, [11C]1a demonstrated translational potential in the non-human primate (NHP) PET imaging study, which sets the stage for clinical translation.


Subject(s)
Nuclear Proteins , Transcription Factors , Animals , Cell Cycle Proteins , Mice , Nuclear Proteins/metabolism , Positron-Emission Tomography , Protein Domains , Transcription Factors/chemistry
17.
Nat Commun ; 13(1): 4171, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853847

ABSTRACT

Alzheimer's disease (AD) is characterized by the brain accumulation of amyloid-ß and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-ß and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-ß, tau, and class I histone deacetylase (HDAC I isoforms 1-3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-ß PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-ß and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-ß plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Histone Deacetylase 1 , Adamantane/analogs & derivatives , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids , Positron-Emission Tomography/methods , Rats , tau Proteins/metabolism
18.
Psychol Med ; 52(9): 1736-1745, 2022 07.
Article in English | MEDLINE | ID: mdl-33046145

ABSTRACT

BACKGROUND: Although aberrant intrinsic functional connectivity has been reported in attention-deficit/hyperactivity disorder (ADHD), we have a limited understanding of whether connectivity alterations are related to the familial risk of ADHD. METHODS: Fifty-three probands with ADHD, their unaffected siblings (n = 53) and typically developing controls (n = 53) underwent resting-state functional magnetic resonance imaging scans. A seed-based approach with the bilateral precuneus/posterior cingulate cortex (PCC) was used to derive a whole-brain functional connectivity map in each subject. The differences in functional connectivity among the three groups were tested with one-way ANOVA using randomized permutation. Comparisons between two groups were also performed to examine the increase or decrease in connectivity. The severity of ADHD symptoms was used to identify brain regions where symptom severity is correlated to the strength of intrinsic functional connectivity. RESULTS: When compared to controls, both probands and unaffected siblings showed increased functional connectivity in the left insula and left inferior frontal gyrus. The connectivity in these regions was linked to better performance in response inhibition in the control group but absent in other groups. Higher ADHD symptom severity was correlated with increased functional connectivity in bilateral fronto-parietal-temporal regions only noted in probands with ADHD. CONCLUSIONS: Alterations in resting-state functional connectivities with the precuneus/PCC, hubs of default-mode network, account for the underlying familial risks of ADHD. Since the left insula and left inferior frontal gyri are key regions of the salience and frontoparietal network, respectively, future studies focusing on alterations of cross-network functional connectivity as the familial risk of ADHD are suggested.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain , Brain Mapping , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Neural Pathways , Siblings
19.
Alzheimers Dement ; 17(12): 1988-1997, 2021 12.
Article in English | MEDLINE | ID: mdl-33860595

ABSTRACT

INTRODUCTION: Aging is an inevitable physiological process and the biggest risk factor of Alzheimer's disease (AD). Developing an imaging tracer to visualize aging-related changes in the brain may provide a useful biomarker in elucidating neuroanatomical mechanisms of AD. METHODS: We developed and characterized a new tracer that can be used to visualize SIRT1 in brains related to aging and AD by positron emission tomography imaging. RESULTS: The SIRT1 tracer displayed desirable brain uptake and selectivity, as well as stable metabolism and proper kinetics and distribution in rodent and nonhuman primate brains. This new tracer was further validated by visualizing SIRT1 in brains of AD transgenic mice, compared to nontransgenic animals. DISCUSSION: Our SIRT1 tracer not only enables, for the first time, the demonstration of SIRT1 in animal brains, but also allows visualization and recapitulation of AD-related SIRT1 neuropathological changes in animal brains.


Subject(s)
Aging/metabolism , Alzheimer Disease/pathology , Brain/pathology , Molecular Imaging , NAD/metabolism , Sirtuin 1/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Positron-Emission Tomography
20.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: mdl-32936886

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) is primarily driven by brain accumulation of the amyloid-ß-42 (Aß42) peptide generated from the amyloid-ß precursor protein (APP) via cleavages by ß- and γ-secretase. γ-Secretase is a prime drug target for AD; however, its brain regional expression and distribution remain largely unknown. Here, we are aimed at developing molecular imaging tools for visualizing γ-secretase. We used our recently developed γ-secretase modulators (GSMs) and synthesized our GSM-based imaging agent, [11C]SGSM-15606. We subsequently performed molecular imaging in rodents, including AD transgenic animals, and macaques, which revealed that our probe displayed good brain uptake and selectivity, stable metabolism, and appropriate kinetics and distribution for imaging γ-secretase in the brain. Interestingly, rodents and macaques shared certain brain areas with high γ-secretase expression, suggesting a functional conservation of γ-secretase. Collectively, we have provided the first molecular brain imaging of γ-secretase, which may not only accelerate our drug discovery for AD but also advance our understanding of AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Molecular Imaging , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Humans , Macaca mulatta , Magnetic Resonance Imaging , Male , Mice, Transgenic , Positron Emission Tomography Computed Tomography , Presenilin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...