Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992165

ABSTRACT

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , CD4-Positive T-Lymphocytes , COVID-19 , Histocompatibility Antigens Class II , Intramolecular Oxidoreductases , Lymphocyte Activation , Macrophage Migration-Inhibitory Factors , SARS-CoV-2 , Humans , Antigens, Differentiation, B-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Lymphocyte Activation/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Cell Movement , Male , Female , Middle Aged , Receptors, Immunologic
2.
Article in English | MEDLINE | ID: mdl-39060374

ABSTRACT

BACKGROUND: CI-8993 is a fully human IgG1κ monoclonal antibody (mAb) that binds specifically to immune checkpoint molecule VISTA (V-domain Ig suppressor of T-cell activation). Phase I safety has been established in patients with advanced cancer (NCT02671955). To determine the pharmacokinetics and biodistribution of CI-8993 in patients, we aimed to develop 89Zr-labelled CI-8993 and validate PET imaging and quantitation in preclinical models prior to a planned human bioimaging trial. METHODS: CI-8993 and human isotype IgG1 control were conjugated to the metal ion chelator p-isothiocyanatobenzyl-desferrioxamine (Df). Quality of conjugates were assessed by SE-HPLC, SDS-PAGE, and FACS. After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. [89Zr]Zr-Df-CI-8993 alone (1 mg/kg, 4.6 MBq) or in combination with 30 mg/kg unlabelled CI-8993, as well as isotype control [89Zr]Zr-Df-IgG1 (1 mg/kg, 4.6 MBq) were assessed in human VISTA knock-in female (C57BL/6 N-Vsirtm1.1(VSIR)Geno, huVISTA KI) or control C57BL/6 mice bearing syngeneic MB49 bladder cancer tumours; and in BALB/c nu/nu mice bearing pancreatic Capan-2 tumours. RESULTS: Stable constructs with an average chelator-to-antibody ratio of 1.81 were achieved. SDS-PAGE and SE-HPLC showed integrity of CI-8993 was maintained after conjugation; and ELISA indicated no impact of conjugation and radiolabelling on binding to human VISTA. PET imaging and biodistribution in MB49 tumour-bearing huVISTA KI female mice showed specific localisation of [89Zr]Zr-Df-CI-8993 to VISTA in spleen and tumour tissues expressing human VISTA. Specific tumour uptake was also demonstrated in Capan-2 xenografted BALB/c nu/nu mice. CONCLUSIONS: We radiolabelled and validated [89Zr]Zr-Df-CI-8993 for specific binding to huVISTA in vivo. Our results demonstrate that 89Zr-labelled CI-8993 is now suitable for targeting and imaging VISTA expression in human trials.

3.
J Nucl Med ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054282

ABSTRACT

The epidermal growth factor receptor (EGFR) protein is highly expressed in a range of malignancies. Although therapeutic interventions directed toward EGFR have yielded therapeutic responses in cancer patients, side effects are common because of normal-tissue expression of wild-type EGFR. We developed a novel tumor-specific anti-EGFR chimeric antibody ch806 labeled with 225Ac and evaluated its in vitro properties and therapeutic efficacy in murine models of glioblastoma and colorectal cancer. Methods: 225Ac-ch806 was prepared using different chelators, yielding [225Ac]Ac-macropa-tzPEG3Sq-ch806 and [225Ac]Ac-DOTA-dhPzPEG4-ch806. Radiochemical yield, purity, apparent specific activity, and serum stability of 225Ac-ch806 were quantified. In vitro cell killing effect was examined. The biodistribution and therapeutic efficacy of 225Ac-ch806 were investigated in mice with U87MG.de2-7 and DiFi tumors. Pharmacodynamic analysis of tumors after therapy was performed, including DNA double-strand break immunofluorescence of γH2AX, as well as immunohistochemistry for proliferation, cell cycle arrest, and apoptosis. Results: [225Ac]Ac-macropa-tzPEG3Sq-ch806 surpassed [225Ac]Ac-DOTA-dhPzPEG4-ch806 in radiochemical yield, purity, apparent specific activity, and serum stability. [225Ac]Ac-macropa-tzPEG3Sq-ch806 was therefore used for both in vitro and in vivo studies. It displayed a significant, specific, and dose-dependent in vitro cell-killing effect in U87MG.de2-7 cells. 225Ac-ch806 also displayed high tumor uptake and minimal uptake in normal tissues. 225Ac-ch806 significantly inhibited tumor growth and prolonged survival in both U87MG.de2-7 and DiFi models. Enhanced γH2AX staining was observed in 225Ac-ch806-treated tumors compared with controls. Reduced Ki-67 expression was evident in all 225Ac-ch806-treated tumors. Increased expression of p21 and cleaved caspase 3 was shown in U87MG.de2-7 and DiFi tumors treated with 225Ac-ch806. Conclusion: In glioblastoma and colorectal tumor models, 225Ac-ch806 significantly inhibited tumor growth via induction of double-strand breaks, thereby constraining cancer cell proliferation while inducing cell cycle arrest and apoptosis. These findings underscore the potential clinical applicability of 225Ac-ch806 as a potential therapy for EGFR-expressing solid tumors.

4.
Hemasphere ; 8(6): e90, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903535

ABSTRACT

Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.

5.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857395

ABSTRACT

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Subject(s)
Cell Differentiation , Phagocytes , Humans , Phagocytes/metabolism , Hematopoietic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Leukemia/genetics , Leukemia/pathology , Leukemia/metabolism , Protein Engineering/methods , Phagocytosis
6.
Article in English | MEDLINE | ID: mdl-38730087

ABSTRACT

PURPOSE: ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS: ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS: The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION: [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.

7.
Transfus Med Hemother ; 51(2): 111-118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584695

ABSTRACT

Introduction: Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration. Methods: To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells. Results: Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells. Conclusion: Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.

8.
Hemasphere ; 8(2): e48, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38435424

ABSTRACT

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

9.
Chem Sci ; 15(9): 3372-3381, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425522

ABSTRACT

Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.

10.
Alzheimer Dis Assoc Disord ; 38(1): 8-13, 2024.
Article in English | MEDLINE | ID: mdl-38277642

ABSTRACT

OBJECTIVE: To assess the value of rescreening patients with Alzheimer's disease who do not meet the inclusion criteria for the Repeatable Battery for the Assessment of Neuropsychological Status Delayed Memory Index (RBANS DMI) at the initial assessment. PATIENTS AND METHODS: Participants (aged 50-85 years, without dementia, Mini-Mental State Examination score ≥22, valid Clinical Dementia Rating [CDR] global score, and amyloid status at baseline) were identified in the European Prevention of Alzheimer's Dementia database. Changes from baseline in RBANS DMI were estimated using a mixed model for repeated measurements. Logistic regressions were used to estimate the probability of participants with baseline RBANS DMI 86-95 having RBANS DMI ≤85, CDR global score ≥0.5, and amyloid positivity at 6 and 12 months. RESULTS: There was significant variability in the change in RBANS DMI scores over time (median change at 6 months: 2.0). An estimated 15% of participants with RBANS DMI 86-95 at baseline progressed to ≤85 at 6 months; 8% also achieved CDR global score ≥0.5 and 5% were also amyloid positive. CONCLUSIONS: The results from our analysis indicate that there is limited value in rescreening patients based on their initial RBANS DMI score.


Subject(s)
Alzheimer Disease , Humans , Neuropsychological Tests , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Amyloidogenic Proteins , Repression, Psychology
11.
Transfusion ; 64(1): 29-38, 2024 01.
Article in English | MEDLINE | ID: mdl-38053445

ABSTRACT

BACKGROUND: The oncological impact of perioperative blood transfusions (PBTs) of patients undergoing radical cystectomy (RC) because of bladder cancer (BCa) has been a controversial topic discussed in recent years. The main cause for the contradictory findings of existing studies might be the missing consideration of the storage time of red blood cell units (BUs), donor age, and gender matching. STUDY DESIGN AND METHODS: We retrospectively analyzed BCa patients who underwent RC in our department between 2004 and 2021. We excluded patients receiving BUs before RC, >10 BUs, or RC in a palliative setting. We assessed the effect of blood donor characteristics and storage time on overall survival (OS) and cancer-specific survival (CSS) through univariate and multivariable Cox regression analysis. We also performed a propensity score matching with patients who received BUs and patients who did not on a 1:1 ratio. RESULTS: We screened 1692 patients and included 676 patients for the propensity score matching. In the multivariable analysis, PBT was independently associated with worse OS and CSS (p < .001). Postoperative transfusions were associated with better OS (p = .004) and CSS (p = .008) compared to intraoperative or mixed transfusions. However, there was no influence of blood donor age, storage time, or gender matching on prognosis. DISCUSSION: In our study of BCa patients undergoing RC, we demonstrate that PBT, especially if administered intraoperatively, is an independent risk factor for a worse prognosis. However, storage time, donor age, or gender matching did not negatively affect oncological outcomes. Therefore, the specific selection of blood products does not promise any benefits.


Subject(s)
Cystectomy , Urinary Bladder Neoplasms , Humans , Retrospective Studies , Urinary Bladder Neoplasms/surgery , Blood Transfusion , Prognosis , Treatment Outcome
12.
Cryobiology ; 113: 104587, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783264

ABSTRACT

To develop cryopreservation methods for cell-based medicinal products it is important to understand osmotic responses of cells upon immersion into solutions with cryoprotective agents (CPAs) and during freezing. The aim of this study was to assess the osmotic response of T cells by using flow imaging microscopy (FIM) as a novel cell-sizing technique, and to corroborate the findings with electrical impedance measurements conducted on a Coulter counter. Jurkat cells were used as a potential model cell line for primary T cells. Cell volume responses were used to derive important cell parameters for cryopreservation such as the osmotically inactive cell volume Vb and the membrane permeability towards water and various CPAs. Unlike Coulter counter measurement, FIM, combined with Trypan blue staining can differentiate between viable and dead cells, which yields a more accurate estimation of Vb. Membrane permeabilities to water, dimethyl sulfoxide (Me2SO) and glycerol were measured for Jurkat cells at different temperatures. The permeation of Me2SO into the cells was faster in comparison to glycerol. CPA permeation decreased with decreasing temperature following Arrhenius behavior. Moreover, membrane permeability to water decreased in the presence of CPAs. Vb of Jurkat cells was found to be 49% of the isotonic volume and comparable to that of primary T cells. FIM proved to be a valuable tool to determine the membrane permeability parameters of mammalian cells to water and cryoprotective agents, which in turn can be used to rationally design CPA loading procedures for cryopreservation.


Subject(s)
Cryoprotective Agents , Glycerol , Humans , Animals , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Glycerol/metabolism , Cryopreservation/methods , Microscopy , T-Lymphocytes , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/metabolism , Cell Membrane Permeability/physiology , Water/metabolism , Mammals/metabolism
13.
Hemasphere ; 7(10): e958, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37841755

ABSTRACT

Activating colony-stimulating factor-3 receptor gene (CSF3R) mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of CSF3R and the t(8;21) associated RUNX1-RUNX1T1 fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype. Gene expression profiling revealed hedgehog signaling as a potential mechanism, with upregulation of GLI2 constituting a putative pharmacological target. Both primary hematopoietic cells and the t(8;21) positive AML cell line SKNO-1 showed increased sensitivity to the GLI inhibitor GANT61 when expressing CSF3R T618I. Our findings suggest that during leukemogenesis, the RUNX1-RUNXT1 fusion and CSF3R mutation act in a synergistic manner to alter hedgehog signaling, which can be exploited therapeutically.

14.
Nat Neurosci ; 26(10): 1713-1725, 2023 10.
Article in English | MEDLINE | ID: mdl-37709997

ABSTRACT

Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Rats , Animals , Multiple Sclerosis/pathology , Central Nervous System/pathology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , T-Lymphocytes/metabolism , Cell Movement/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology
15.
Nucl Med Biol ; 122-123: 108366, 2023.
Article in English | MEDLINE | ID: mdl-37473513

ABSTRACT

INTRODUCTION: Anti-ASCT2 antibody drug conjugate (ADC) MEDI7247 has been under development as a potential anti-cancer therapy for patients with selected relapsed/refractory hematological malignancies and advanced solid tumors by MedImmune. Although promising efficacy was observed in the clinic, pharmacokinetic (PK) analyses observed low exposure of MEDI7247 in phase I hematological patients. To investigate the biodistribution properties of MEDI7247, MEDI7247 and control antibodies were radiolabeled with zirconium-89 and in vitro and in vivo properties characterized. METHODS: MEDI7247 (human anti-ASCT2 antibody conjugated with pyrrolobenzodiazepine (PBD)) and MEDI7519 (MEDI7247 without PBD drug conjugate) and an isotype control antibody drug conjugate construct were conjugated with p-isothiocyanatobenzyl-deferoxamine (Df) and radiolabeled with zirconium-89. In vitro studies included determining the radiochemical purity, protein integrity, immunoreactivity (Lindmo analysis), apparent antigen binding affinity for ASCT2-positive cells by Scatchard analysis and serum stability of the radiolabeled immunoconjugates. In vivo studies included biodistribution and PET/MRI imaging studies of the radiolabeled immunoconjugates in an ASCT2-positive tumor model, HT-29 colorectal carcinoma xenografts. RESULTS: Conditions for the Df-conjugation and radiolabeling of antibody constructs were determined to produce active radioimmunoconjugates. In vivo biodistribution and whole body PET/MRI imaging studies of [89Zr]Zr-Df-MEDI7519 and [89Zr]Zr-Df-MEDI7247 radioimmunoconjugates in HT-29 colon carcinoma xenografts in BALB/c nude mice demonstrated specific tumor localization. However, more rapid blood clearance and non-specific localization in liver was observed for [89Zr]Zr-Df-MEDI7247 and [89Zr]Zr-Df-MEDI7519 compared to isotype control ADC. Except for liver and bone, other normal tissues demonstrated clearance reflecting the blood clearance for all three constructs and no other abnormal tissue uptake. CONCLUSIONS AND ADVANCES IN KNOWLEDGE: Preclinical biodistribution analyses of [89Zr]Zr-Df-MEDI7247 and [89Zr]Zr-Df-MEDI7519 showed the biodistribution pattern of anti-ASCT2 ADC MEDI7247 was similar to parental MEDI7519, and both antibodies showed specific tumor uptake compared to an isotype control ADC. This study highlights an important role nuclear medicine imaging techniques can play in early preclinical assessment of drug specificity as part of the drug development pipeline.


Subject(s)
Colonic Neoplasms , Immunoconjugates , Mice , Animals , Humans , Tissue Distribution , Immunoconjugates/pharmacokinetics , Mice, Nude , Positron-Emission Tomography/methods , Zirconium/chemistry , Cell Line, Tumor
16.
Mol Cancer ; 22(1): 107, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422628

ABSTRACT

BACKGROUND: Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS: To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS: A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS: These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.


Subject(s)
Leukemia , Proteomics , Humans , Mice , Animals , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , CRISPR-Cas Systems , Membrane Proteins/genetics , Membrane Proteins/metabolism , Leukemia/genetics , Disease Models, Animal , Tumor Microenvironment , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism
18.
Nucl Med Biol ; 120-121: 108351, 2023.
Article in English | MEDLINE | ID: mdl-37224789

ABSTRACT

OBJECTIVES: 89Zr-labelled proteins are gaining importance in clinical research in a variety of diseases. To date, no clinical study has been reported that utilizes an automated approach for radiosynthesis of 89Zr-labelled radiopharmaceuticals. We aim to develop an automated method for the clinical production of 89Zr-labelled proteins and apply this method to Durvalumab, a monoclonal antibody targeting PD-L1 immune-checkpoint protein. PD-L1 expression is poorly understood and can be up-regulated over the course of chemo- and radiotherapy treatment. The ImmunoPET multicentre study aims to examine the dynamics of PD-L1 expression via 89Zr-Durvalumab PET imaging before, during, and after chemoradiotherapy. The developed automated technique will enable reproducible clinical production of [89Zr]Zr-DFOSq-Durvalumab for this study at three different sites. METHODS: Conjugation of Durvalumab to H3DFOSqOEt was optimized for optimal chelator-to-antibody ratio. Automated radiolabelling of H3DFOSq-Durvalumab with zirconium-89 was optimized on the disposable cassette based iPHASE technologies MultiSyn radiosynthesizer using a modified cassette. Activity losses were tracked using a dose calibrator and minimized by optimizing fluid transfers, reaction buffer, antibody formulation additives and pH. The biological profile of the radiolabelled antibody was confirmed in vivo in PD-L1+ (HCC827) and PD-L1- (A549) murine xenografts. Clinical process validation and quality control were performed at three separate study sites to satisfy clinical release criteria. RESULTS: H3DFOSq-Durvalumab with an average CAR of 3.02 was obtained. Radiolabelling kinetics in succinate (20 mM, pH 6) were significantly faster when compared to HEPES (0.5 M, pH 7.2) with >90 % conversion observed after 15 min. Residual radioactivity in the 89Zr isotope vial was reduced from 24 % to 0.44 % ± 0.18 % (n = 7) and losses in the reactor vial were reduced from 36 % ± 6 % (n = 4) to 0.82 % ± 0.75 % (n = 4) by including a surfactant in the reaction and formulation buffers. Overall process yield was 75 % ± 6 % (n = 5) and process time was 40 min. Typically, 165 MBq of [89Zr]Zr-DFOSq-Durvalumab with an apparent specific activity of 315 MBq/mg ± 34 MBq/mg (EOS) was obtained in a volume of 3.0 mL. At end-of-synthesis (EOS), radiochemical purity and protein integrity were always >99 % and >96 %, respectively, and dropped to 98 % and 65 % after incubation in human serum for 7 days at 37 °C. Immunoreactive fraction in HEK293/PD-L1 cells was 83.3 ± 9.0 (EOS). Preclinical in vivo data at 144 h p.i. showed excellent SUVmax in PD-L1+ tumour (8.32 ± 0.59) with a tumour-background ratio of 17.17 ± 3.96. [89Zr]Zr-DFOSq-Durvalumab passed all clinical release criteria at each study site and was deemed suitable for administration in a multicentre imaging trial. CONCLUSION: Fully automated production of [89Zr]Zr-DFOSq-Durvalumab for clinical use was achieved with minimal exposure to the operator. The cassette-based approach allows for consecutive productions on the same day and offers an alternative to currently used manual protocols. The method should be broadly applicable to other proteins and has the potential for clinical impact considering the growing number of clinical trials investigating 89Zr-labelled antibodies.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Animals , Mice , B7-H1 Antigen/metabolism , HEK293 Cells , Antibodies, Monoclonal , Positron-Emission Tomography/methods , Radiopharmaceuticals , Zirconium
19.
HLA ; 102(3): 331-342, 2023 09.
Article in English | MEDLINE | ID: mdl-37068792

ABSTRACT

Molecular matching is a new approach for virtual histocompatibility testing in organ transplantation. The aim of our study was to analyze whether the risk for de novo donor-specific HLA antibodies (dnDSA) after lung transplantation (LTX) can be predicted by molecular matching algorithms (MMA) and their combination. In this retrospective study we included 183 patients undergoing LTX at our center from 2012-2020. We monitored dnDSA development for 1 year. Eplet mismatches (epMM) using HLAMatchmaker were calculated and highly immunogenic eplets based on their ElliPro scores were identified. PIRCHE-II scores were calculated using PIRCHE-II algorithm (5- and 11-loci). We compared epMM and PIRCHE-II scores between patients with and without dnDSA using t-test and used ROC-curves to determine optimal cut-off values to categorize patients into four groups. We used logistic regression with AIC to compare the predictive value of PIRCHE-II, epMM, and their combination. In total 28.4% of patients developed dnDSA (n = 52), 12.5% class I dnDSA (n = 23), 24.6% class II dnDSA (n = 45), and 8.7% both class II and II dnDSA (n = 16). Mean epMMs (p-value = 0.005), mean highly immunogenic epMMs (p-value = 0.003), and PIRCHE-II (11-loci) (p = 0.01) were higher in patients with compared to without class II dnDSA. Patients with highly immunogenic epMMs above 30.5 and PIRCHE-II 11-loci above 560.0 were more likely to develop dnDSA (31.1% vs. 14.8%, p-value = 0.03). The logistic regression model including the grouping variable showed the best predictive value. MMA can support clinicians to identify patients at higher or lower risk for developing class II dnDSA and might be helpful tools for immunological risk assessment in LTX patients.


Subject(s)
Kidney Transplantation , Lung Transplantation , Humans , Retrospective Studies , Graft Rejection , Alleles , Antibodies , Histocompatibility Testing , HLA Antigens , Tissue Donors , Isoantibodies
20.
Anal Biochem ; 670: 115153, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37037311

ABSTRACT

Different protein purification methods exist. Yet, they need to be adapted for specific downstream applications to maintain functional integrity of the recombinant proteins. This study established a purification protocol for lentiviral Vpx (viral protein X) and test its ability to degrade sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) ex vivo in resting CD4+ T cells. For this purpose, we cloned a novel eukaryotic expression plasmid for Vpx including C-terminal 10x His- and HA-tags and confirmed that those tags did not alter the ability to degrade SAMHD1. We optimized purification conditions for Vpx produced in HEK293T cells with CHAPS as detergent and Co-NTA resins yielding the highest solubility and protein amounts. Size exclusion chromatography (SEC) further enhanced the purity of recombinant Vpx proteins. Importantly, nucleofection of resting CD4+ T cells demonstrated that purified recombinant Vpx protein efficiently degraded SAMHD1 in a proteasome-dependent manner. In conclusion, this protocol is suitable for functional downstream applications of recombinant Vpx and might be transferrable to other recombinant proteins with similar functions/properties as lentiviral Vpx.


Subject(s)
Monomeric GTP-Binding Proteins , T-Lymphocytes , Humans , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , HEK293 Cells , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , CD4-Positive T-Lymphocytes , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL