Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Commun ; 13(1): 3018, 2022 05 31.
Article En | MEDLINE | ID: mdl-35641497

The dysregulated physical interaction between two intracellular membrane proteins, the sarco/endoplasmic reticulum Ca2+ ATPase and its reversible inhibitor phospholamban, induces heart failure by inhibiting calcium cycling. While phospholamban is a bona-fide therapeutic target, approaches to selectively inhibit this protein remain elusive. Here, we report the in vivo application of intracellular acting antibodies (intrabodies), derived from the variable domain of camelid heavy-chain antibodies, to modulate the function of phospholamban. Using a synthetic VHH phage-display library, we identify intrabodies with high affinity and specificity for different conformational states of phospholamban. Rapid phenotypic screening, via modified mRNA transfection of primary cells and tissue, efficiently identifies the intrabody with most desirable features. Adeno-associated virus mediated delivery of this intrabody results in improvement of cardiac performance in a murine heart failure model. Our strategy for generating intrabodies to investigate cardiac disease combined with modified mRNA and adeno-associated virus screening could reveal unique future therapeutic opportunities.


Calcium-Binding Proteins , Heart Failure , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Heart , Mice , RNA, Messenger
2.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 1003-1014, 2019 Nov 01.
Article En | MEDLINE | ID: mdl-31692474

Apoptosis is a crucial process by which multicellular organisms control tissue growth, removal and inflammation. Disruption of the normal apoptotic function is often observed in cancer, where cell death is avoided by the overexpression of anti-apoptotic proteins of the Bcl-2 (B-cell lymphoma 2) family, including Mcl-1 (myeloid cell leukaemia 1). This makes Mcl-1 a potential target for drug therapy, through which normal apoptosis may be restored by inhibiting the protective function of Mcl-1. Here, the discovery and biophysical properties of an anti-Mcl-1 antibody fragment are described and the utility of both the scFv and Fab are demonstrated in generating an Mcl-1 crystal system amenable to iterative structure-guided drug design.


Drug Discovery , Immunoglobulin Fab Fragments/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Single-Chain Antibodies/chemistry , Animals , Apoptosis , CHO Cells , Cloning, Molecular , Cricetulus , Escherichia coli/genetics , Humans
3.
MAbs ; 10(1): 104-117, 2018 01.
Article En | MEDLINE | ID: mdl-28952876

C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.


Antibodies, Monoclonal/pharmacology , Antibody Affinity , Complement C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptors, Chemokine/antagonists & inhibitors , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Specificity , Binding Sites, Antibody , Complement C5a/chemistry , Complement C5a/immunology , Complement C5a/metabolism , Epitope Mapping/methods , Epitopes , HEK293 Cells , Humans , Protein Binding , Protein Conformation , Protein Engineering , Receptor, Anaphylatoxin C5a/chemistry , Receptor, Anaphylatoxin C5a/immunology , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Chemokine/chemistry , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 8(2): 239-244, 2017 Feb 09.
Article En | MEDLINE | ID: mdl-28197319

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 µM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a ß-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 µM and Bcl-xL at >99 µM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 µM after 6 h.

6.
Mol Biosyst ; 11(10): 2738-49, 2015 Oct.
Article En | MEDLINE | ID: mdl-26135796

The HIF-1α/p300 protein-protein interaction plays a key role in tumor metabolism and thus represents a high value target for anticancer drug-development. Although several studies have identified inhibitor candidates using rationale design, more detailed understanding of the interaction and binding interface is necessary to inform development of superior inhibitors. In this work, we report a detailed biophysical analysis of the native interaction with both peptide and Adhiron phage display experiments to identify novel binding motifs and binding regions of the surface of p300 to inform future inhibitor design.


E1A-Associated p300 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Peptides/chemistry , Peptides/pharmacology , Binding Sites/drug effects , E1A-Associated p300 Protein/chemistry , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Models, Molecular , Peptide Library , Protein Binding/drug effects , Protein Interaction Maps/drug effects , Protein Structure, Secondary
7.
J Med Chem ; 52(23): 7901-5, 2009 Dec 10.
Article En | MEDLINE | ID: mdl-19736928

A novel class of 4-pyridinoxy-2-anilinopyridine-based TGF-beta type I receptor (also known as activin-like kinase 5 or ALK5) inhibitors is reported. The binding mode of this scaffold was successfully predicted by analyzing possible docked binding modes of literature inhibitors and novel synthetic ideas. Compounds such as 19 are potent ALK5 inhibitors with good physicochemical and pharmacokinetic properties and thus represent high quality leads for further optimization.


Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , Catalytic Domain , Cell Line, Tumor , Drug Discovery , Humans , Inhibitory Concentration 50 , Kinetics , Male , Models, Molecular , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/chemistry , Receptors, Transforming Growth Factor beta/metabolism , Structure-Activity Relationship
...