Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Gels ; 9(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37998990

ABSTRACT

This research introduces a novel approach by incorporating various types of gelatins, including bovine, porcine, and fish skin, into polycaprolactone and poly (lactic-co-glycolic acid) using a solvent casting method. The films are evaluated for morphology, mechanical properties, thermal stability, biodegradability, hemocompatibility, cell adhesion, proliferation, and cytotoxicity. The results show that the incorporation of gelatins into the films alters their mechanical properties, with a decrease in tensile strength but an increase in elongation at break. This indicates that the films become more flexible with the addition of gelatin. Gelatin incorporation has a limited effect on the thermal stability of the films. The composites with the gelatin show higher biodegradability with the highest weight loss in the case of fish gelatin. The films exhibit high hemocompatibility with minimal hemolysis observed. The gelatin has a dynamic effect on cell behavior and promotes long-term cell proliferation. In addition, all composite films reveal exceptionally low levels of cytotoxicity. The combination of the evaluated parameters shows the appropriate level of biocompatibility for gelatin-based samples. These findings provide valuable insights for future studies involving gelatin incorporation in tissue engineering applications.

2.
Chemosphere ; 328: 138605, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028715

ABSTRACT

The study was aimed to conduct the bioremediation of synthetic musks by four species of white rot fungi combined with phytoremediation (Zea mays) in biosolid-amended soils where only Galaxolide (HHCB) and Tonalide (AHTN) were found as other musks were below the detection limit (0.5-2 µg/kg dw). The HHCB and AHTN concentration in natural attenuation treated soil was decreased by not more than 9%. In solely mycoremediation, Pleurotus ostreatus was found to be the most efficient fungal strain, with the higher (P < 0.05) HHCB and AHTN removal (51.3% and 46.4%). Phytoremediation-only of biosolid-amended soil was also able to remove HHCB and AHTN from soil significantly (P < 0.05) in comparison to the control treatment without plants which resulted in the final concentration for both compounds of 56.2 and 15.3 µg/kg dw, respectively. Using white rot fungus-assisted phytoremediation, only P. ostreatus decreased the HHCB content in soil significantly (P < 0.05) by 44.7%, when compared to the initial concentration. While using Phanerochaete chrysosporium, the AHTN concentration was decreased by 34.5%, which was a significantly lower concentration at the end of experiment compared to the initial value. Via fungus-assisted phytoremediation, the enzymatic activity and fungal biomass were increased, probably due to the presence of roots in association with the soil microbiome, in the process increasing the degradation of fragrances accordingly. This could lead to a higher (P < 0.05) AHTN removal in P. chrysosporium assisted phytoremediation. Estimated HHCB and AHTN bioaccumulation factors in maize were lower than 1, therefore no environmental risk would be posed.


Subject(s)
Basidiomycota , Water Pollutants, Chemical , Biodegradation, Environmental , Biosolids , Tetrahydronaphthalenes/analysis , Benzopyrans/analysis , Water Pollutants, Chemical/analysis
3.
Biomed Eng Online ; 22(1): 33, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013601

ABSTRACT

Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.


Subject(s)
Bone and Bones , Tissue Engineering , Humans , Tissue Engineering/methods , Osteogenesis , Biocompatible Materials/pharmacology , Osteoblasts , Cell Differentiation , Cells, Cultured , Cell Proliferation , Tissue Scaffolds
4.
Waste Manag Res ; 41(2): 328-336, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36128623

ABSTRACT

One 25-kg dog produces about 500 g of excrement per day. Excrement is a potentially hazardous material, as it may contain pathogenic microorganisms. Our samples were tested for the presence of thermotolerant coliform bacteria, Enterococcus spp., Escherichia coli and Salmonella spp., which are indicators of faecal contamination, as well as for the presence of helminths and their eggs. During the experiment, it was observed whether these microorganisms could be eliminated by vermicomposting. There were two variants of vermicomposting piles: one test pile (with continuous feeding) and one control pile (with a single feeding). The vermicomposting process was run in outdoor conditions in park for 51 weeks using Eisenia andrei earthworms. The vermicomposting of dog excrement with waste from park maintenance (1:2) can produce a good quality fertiliser. During the process of vermicomposting, there was a gradual decrease in the content of pathogenic bacteria. At the end of the vermicomposting process, there were no eggs or adult helminths. The vermicompost was very rich in microorganisms and enzymatic activity. The pH value was slightly alkaline, and the C:N ratio corresponded to value of mature vermicompost.


Subject(s)
Oligochaeta , Dogs , Animals , Soil/chemistry , Fertilizers
5.
J Hazard Mater ; 369: 79-86, 2019 05 05.
Article in English | MEDLINE | ID: mdl-30772690

ABSTRACT

An experiment was established to compare composting and vermicomposting for decreasing the content of polycyclic aromatic hydrocarbons (PAHs) in biomass fly ash incorporated into organic waste mixtures. PAH removal from the ash-organic waste mixture was compared to the same mixture spiked with PAHs. The removal of 16 individual ash PAHs ranged between 28.7 and 98.5% during the 240 day experiment. Greater dissipation of total PAH content of ash origin was observed at the end of composting (84.5%) than after the vermicomposting (61.6%). Most ash PAHs were removed similarly to spiked PAHs through the composting and vermicomposting processes. Higher manganese peroxidase in composting treatments indicated increased activity of ligninolytic PAH-degrading microorganisms. 3D models of total PAH removal were parametrized using the polarity index and organic matter content, and paraboloid equations for each treatment were estimated (all R2 > 0.91). A two-phase model of pseudo-first order kinetics analysis showed faster PAH removal by higher rate constants during the first 120 days of the experiment. The compost and vermicompost produced from the bioremediation treatments are usable as soil organic amendments.


Subject(s)
Biodegradation, Environmental , Biomass , Composting , Polycyclic Aromatic Hydrocarbons/chemistry , Sewage/analysis , Soil Pollutants/analysis , Animals , Coal Ash , Kinetics , Lipase/chemistry , Oligochaeta , Peroxidases/chemistry , Soil
6.
J Environ Sci (China) ; 76: 249-258, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30528015

ABSTRACT

A 120-day experiment was conducted to compare the removal of polycyclic aromatic hydrocarbons (PAHs) from agricultural soil after natural attenuation (NA), phytoremediation (P), mycoremediation (M), and plant-assisted mycoremediation (PAM) approaches in relation to the extracellular enzyme activities in soil. The NA treatment removed the total soil PAH content negligibly. The P treatment using maize (Zea mays) enhanced only the removal of low and medium molecular PAHs. The Pleurotus ostreatus cultivated on 30-50 mm wood chip substrate used in M treatment was the most successful in the removal of majority PAHs. Therefore, significantly (p < 0.05) highest total PAH removal by 541.4 µg/kg dw (dry weight) (36%) from all tested M treatments was observed. When using the same fungal substrate together with maize in PAM treatment, the total PAH removal was not statistically different from the previous M treatment. However, the maize-assisted mycoremediation treatment significantly boosted fungal biomass, microbial and manganese peroxidase activity in soil which strongly correlated with the removal of total PAHs. The higher PAH removal in that PAM treatment could be reflected in the following post-harvest time. Our suggested M and PAM approaches could be promising in situ bioremediation strategies for PAH-contaminated soils.


Subject(s)
Extracellular Space/enzymology , Peroxidases/metabolism , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism , Soil/chemistry , Biodegradation, Environmental , Biomass , Pleurotus/cytology , Pleurotus/metabolism , Zea mays/cytology , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL