Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(20): 13727-13732, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728661

ABSTRACT

Although chemical methods for the selective derivatization of amino acid (AA) side chains in peptides and proteins are available, selective N-terminal labeling is challenging, especially for glycine, which has no side chain at the α-carbon position. We report here a double activation at glycine's α-methylene group that allows this AA to be differentiated from the other 19 AAs. A condensation reaction of dibenzoylmethane with glycine results in the formation of an imine, and subsequent tautomerization is followed by intramolecular cyclization, leading to the formation of a fluorescent pyrrole ring. Additionally, the approach exhibits compatibility with AAs possessing reactive side chains. Further, the method allows for selective pull-down assays of N-terminal glycine peptides from mixtures without prior knowledge of the N-terminal peptide distribution.


Subject(s)
Fluorescent Dyes , Glycine , Peptides , Glycine/chemistry , Fluorescent Dyes/chemistry , Peptides/chemistry , Molecular Structure
2.
J Am Chem Soc ; 144(49): 22676-22688, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36450151

ABSTRACT

Semiconductor nanocrystals (NCs) interfaced with molecular ligands that function as charge and energy acceptors are an emerging platform for the design of light-harvesting, photon-upconverting, and photocatalytic materials. However, NC systems explored for these applications often feature high concentrations of bound acceptor ligands, which can lead to ligand-ligand interactions that may alter each system's ability to undergo charge and energy transfer. Here, we demonstrate that aggregation of acceptor ligands impacts the rate of photoinduced NC-to-ligand charge transfer between lead(II) sulfide (PbS) NCs and perylenediimide (PDI) electron acceptors. As the concentration of PDI acceptors is increased, we find the average electron transfer rate from PbS to PDI ligands decreases by nearly an order of magnitude. The electron transfer rate slowdown with increasing PDI concentration correlates strongly with the appearance of PDI aggregates in steady-state absorption spectra. Electronic structure calculations and molecular dynamics (MD) simulations suggest PDI aggregation slows the rate of electron transfer by reducing orbital overlap between PbS charge donors and PDI charge acceptors. While we find aggregation slows electron transfer in this system, the computational models we employ predict ligand aggregation could also be used to speed electron transfer by producing delocalized states that exhibit improved NC-molecule electronic coupling and energy alignment with NC conduction band states. Our results demonstrate that ligand aggregation can alter rates of photoinduced electron transfer between NCs and organic acceptor ligands and should be considered when designing hybrid NC:molecule systems for charge separation.


Subject(s)
Electrons , Nanoparticles , Ligands , Imides/chemistry
3.
ACS Cent Sci ; 8(8): 1125-1133, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36032764

ABSTRACT

Molecular encoding in abiotic sequence-defined polymers (SDPs) has recently emerged as a versatile platform for information and data storage. However, the storage capacity of these sequence-defined polymers remains underwhelming compared to that of the information storing biopolymer DNA. In an effort to increase their information storage capacity, herein we describe the synthesis and simultaneous sequencing of eight sequence-defined 10-mer oligourethanes. Importantly, we demonstrate the use of different isotope labels, such as halogen tags, as a tool to deconvolute the complex sequence information found within a heterogeneous mixture of at least 96 unique molecules, with as little as four micromoles of total material. In doing so, relatively high-capacity data storage was achieved: 256 bits in this example, the most information stored in a single sample of abiotic SDPs without the use of long strands. Within the sequence information, a 256-bit cipher key was stored and retrieved. The key was used to encrypt and decrypt a plain text document containing The Wonderful Wizard of Oz. To validate this platform as a medium of molecular steganography and cryptography, the cipher key was hidden in the ink of a personal letter, mailed to a third party, extracted, sequenced, and deciphered successfully in the first try, thereby revealing the encrypted document.

4.
Bioconjug Chem ; 33(6): 1156-1165, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35622964

ABSTRACT

A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.


Subject(s)
Fluorescent Dyes , Xanthenes , Amino Acids , Azides/chemistry , Fluorescent Dyes/chemistry , Ionophores , Peptides
5.
J Phys Chem Lett ; 13(6): 1416-1423, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35119280

ABSTRACT

Semiconductor nanocrystals (NCs) have emerged as promising photocatalysts. However, NCs are often functionalized with complex ligand shells that contain not only charge acceptors but also other "spectator ligands" that control NC solubility and affinity for target reactants. Here, we show that spectator ligands are not passive observers of photoinduced charge transfer but rather play an active role in this process. We find the rate of electron transfer from quantum-confined PbS NCs to perylenediimide acceptors can be varied by over a factor of 4 simply by coordinating cinnamate ligands with distinct dipole moments to NC surfaces. Theoretical calculations indicate this rate variation stems from both ligand-induced changes in the free energy for charge transfer and electrostatic interactions that alter perylenediimide electron acceptor orientation on NC surfaces. Our work shows NC-to-molecule charge transfer can be fine-tuned through ligand shell design, giving researchers an additional handle for enhancing NC photocatalysis.

6.
J Am Chem Soc ; 142(41): 17630-17643, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32897707

ABSTRACT

There is growing interest in creating solids that are responsive to various stimuli. Herein we report the first molecular-level mechanistic picture of the thermochromic polymorphic transition in a series of MAN-NI dyad crystals that turn from orange to yellow upon heating with minimal changes to the microscopic morphology following the transition. Detailed structural analyses revealed that the dyads assemble to create an alternating bilayer type structure, with horizontal alternating alkyl and stacked aromatic layers in both the orange and yellow forms. The observed dynamic behavior in the solid state moves as a yellow wavefront through the orange crystal. The overall process is critically dependent on a complex interplay between the layered structure of the starting crystal, the thermodynamics of the two differently colored forms, and similar densities of the two polymorphs. Upon heating, the orange form alkyl chain layers become disordered, allowing for some lateral diffusion of dyads within their own layer. Moving to either adjacent stack in the same layer allows a dyad to exchange a head-to-head stacking geometry (orange) for a head-to-tail stacking geometry (yellow). This transition is unique in that it involves a nucleation and growth mechanism that converts to a faster cooperative wavefront mechanism during the transition. The fastest moving of the wavefronts have an approximately 38° angle with respect to the long axis of the crystal, corresponding to a nonconventional C-H···O hydrogen bond network of dyad molecules in adjacent stacks that enables a transition with cooperative character to proceed within layers of orange crystals. The orange-to-yellow transition is triggered at a temperature that is very close to the temperature at which the orange and yellow forms exchange as the more stable, while being lower than the melting temperature of the original orange, or final yellow, solids.

7.
J Org Chem ; 83(16): 9568-9570, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29927588

ABSTRACT

The controlled preparation of higher order oligopyrrolic species holds broad utility across the chemical and material sciences. Here, we describe the gram-scale synthesis of a bench-stable 5,5″-unsubstituted terpyrrole in excellent yield via a tandem Suzuki cross-coupling with in situ deprotection. The solution and solid-state stability as well as UV-vis, fluorescence, and single crystal X-ray diffraction structure are also detailed.


Subject(s)
Pyrroles/chemistry , Pyrroles/chemical synthesis , Chemistry Techniques, Synthetic , Drug Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...