Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Eur J Hum Genet ; 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38253783

The inherited disease community in Sri Lanka has been widely neglected. This article aimed to present accumulated knowledge in establishing a pro bono cost-effective national, island-wide, free-of-charge molecular diagnostic service, suggesting a model for other developing countries. The project provided 637 molecular diagnostic tests and reports free of charge to a nation with limited resources. We pioneered the implementation of mobile clinics and home visits, where the research team acted as barefoot doctors with the concept of the doctor and the researcher at the patient's doorstep. Establishing pro bono, cost-effective molecular diagnostics is feasible in developing countries with limited resources and state funding through the effort of dedicated postgraduate students. This service could provide an accurate molecular diagnosis of Duchenne muscular dystrophy, Huntington's disease, Spinocerebellar ataxia, and Spinal muscular atrophy, a diagnostic yield of 54% (343/637), of which 43% (147/343) of the patients identified as amenable for available gene therapies. Initiated human resource development by double doctoral degree opportunities with international collaborations. Established a neurobiobank and a national registry in Sri Lanka, a rich and unique repository, wealth creation for translational collaborative research and sharing of information in neurological diseases, as well as a lodestar for aspiring initiatives from other developing countries.

2.
Eur J Med Res ; 29(1): 37, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195599

BACKGROUND: The phenotype of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients is determined by the type of DMD gene variation, its location, effect on reading frame, and its size. The primary objective of this investigation was to determine the frequency and distribution of DMD gene variants (deletions/duplications) in Sri Lanka through the utilization of a combined approach involving multiplex polymerase chain reaction (mPCR) followed by Multiplex Ligation Dependent Probe Amplification (MLPA) and compare to the international literature. The current consensus is that MLPA is a labor efficient yet expensive technique for identifying deletions and duplications in the DMD gene. METHODOLOGY: Genetic analysis was performed in a cohort of 236 clinically suspected pediatric and adult myopathy patients in Sri Lanka, using mPCR and MLPA. A comparative analysis was conducted between our findings and literature data. RESULTS: In the entire patient cohort (n = 236), mPCR solely was able to identify deletions in the DMD gene in 131/236 patients (DMD-120, BMD-11). In the same cohort, MLPA confirmed deletions in 149/236 patients [DMD-138, BMD -11]. These findings suggest that mPCR has a detection rate of 95% (131/138) among all patients who received a diagnosis. The distal and proximal deletion hotspots for DMD were exons 45-55 and 6-15. Exon 45-60 identified as a novel in-frame variation hotspot. Exon 45-59 was a hotspot for BMD deletions. Comparisons with the international literature show significant variations observed in deletion and duplication frequencies in DMD gene across different populations. CONCLUSION: DMD gene deletions and duplications are concentrated in exons 45-55 and 2-20 respectively, which match global variation hotspots. Disparities in deletion and duplication frequencies were observed when comparing our data to other Asian and Western populations. Identified a 95% deletion detection rate for mPCR, making it a viable initial molecular diagnostic approach for low-resource countries where MLPA could be used to evaluate negative mPCR cases and cases with ambiguous mutation borders. Our findings may have important implications in the early identification of DMD with limited resources in Sri Lanka and to develop tailored molecular diagnostic algorithms that are regional and population specific and easily implemented in resource limited settings.


Pathology, Molecular , Resource-Limited Settings , Adult , Humans , Child , Sri Lanka , Algorithms , Phenotype
3.
J Clin Med ; 12(17)2023 Aug 29.
Article En | MEDLINE | ID: mdl-37685704

Brain function and its effect on motor performance in Duchenne muscular dystrophy (DMD) is an emerging concept. The present study explored how cumulative dystrophin isoform loss, age, and a corticosteroid treatment affect DMD motor outcomes. A total of 133 genetically confirmed DMD patients from Sri Lanka were divided into two groups based on whether their shorter dystrophin isoforms (Dp140, Dp116, and Dp71) were affected: Group 1, containing patients with Dp140, Dp116, and Dp71 affected (n = 98), and Group 2, containing unaffected patients (n = 35). A subset of 52 patients (Group 1, n = 38; Group 2, n = 14) was followed for up to three follow-ups performed in an average of 28-month intervals. The effect of the cumulative loss of shorter dystrophin isoforms on the natural history of DMD was analyzed. A total of 74/133 (56%) patients encountered developmental delays, with 66/74 (89%) being in Group 1 and 8/74 (11%) being in Group 2 (p < 0.001). Motor developmental delays were predominant. The hip and knee muscular strength, according to the Medical Research Council (MRC) scale and the North Star Ambulatory Assessment (NSAA) activities, "standing on one leg R", "standing on one leg L", and "walk", declined rapidly in Group 1 (p < 0.001 In the follow-up analysis, Group 1 patients became wheelchair-bound at a younger age than those of Group 2 (p = 0.004). DMD motor dysfunction is linked to DMD mutations that affect shorter dystrophin isoforms. When stratifying individuals for clinical trials, considering the DMD mutation site and its impact on a shorter dystrophin isoform is crucial.

4.
Heliyon ; 9(8): e18530, 2023 Aug.
Article En | MEDLINE | ID: mdl-37593636

Introduction: Documented Duchenne Muscular Dystrophy (DMD) biomarkers are confined to Caucasians and are poor indicators of cognitive difficulties and neuropsychological alterations. Materials and methods: This study correlates serum protein signatures with cognitive performance in DMD patients of South Asian origin. Study included 25 DMD patients aged 6-16 years. Cognitive profiles were assessed by Wechsler Intelligence Scale for Children. Serum proteome profiling of 1317 proteins was performed in eight DMD patients and eight age-matched healthy volunteers. Results: Among the several novel observations we report, better cognitive performance in DMD was associated with increased serum levels of MMP9 and FN1 but decreased Siglec-3, C4b, and C3b. Worse cognitive performance was associated with increased serum levels of LDH-H1 and PDGF-BB but reduced GDF-11, MMP12, TPSB2, and G1B. Secondly, better cognitive performance in Processing Speed (PSI) and Perceptual Reasoning (PRI) domains was associated with intact Dp116, Dp140, and Dp71 dystrophin isoforms while better performance in Verbal Comprehension (VCI) and Working Memory (WMI) domains was associated with intact Dp116 and Dp140 isoforms. Finally, functional pathways shared with Alzheimer's Disease (AD) point towards an astrocyte-centric model for DMD. Conclusion: Astrocytic dysfunction leading to synaptic dysfunction reported previously in AD may be a common pathogenic mechanism underlying both AD and DMD, linking protein alterations to cognitive impairment. This new insight may pave the path towards novel therapeutic approaches targeting reactive astrocytes.

5.
Article En | MEDLINE | ID: mdl-37089709

Neuroimmune diseases are a group of disorders that occur due to the dysregulation of both the nervous and immune systems, and these illnesses impact tens of millions of people worldwide. However, patients who suffer from these debilitating conditions have very few FDA-approved treatment options. Neuroimmune crosstalk is important for controlling the immune system both centrally and peripherally to maintain tissue homeostasis. This review aims to provide readers with information on how natural products modulate neuroimmune crosstalk and the therapeutic implications of natural products, including curcumin, epigallocatechin-3-gallate (EGCG), ginkgo special extract, ashwagandha, Centella asiatica, Bacopa monnieri, ginseng, and cannabis to mitigate the progression of neuroimmune diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, depression, and anxiety disorders. The majority of the natural products based clinical studies mentioned in this study have yielded positive results. To achieve the expected results from natural products based clinical studies, researchers should focus on enhancing bioavailability and determining the synergistic mechanisms of herbal compounds and extracts, which will lead to the discovery of more effective phytomedicines while averting the probable negative effects of natural product extracts. Therefore, future studies developing nutraceuticals to mitigate neuroimmune diseases that incorporate phytochemicals to produce synergistic effects must analyse efficacy, bioavailability, gut-brain axis function safety, chemical modifications, and encapsulation with nanoparticles.

6.
IBRO Neurosci Rep ; 14: 146-153, 2023 Jun.
Article En | MEDLINE | ID: mdl-36819775

Background: In this article, the authors discuss how they utilized the genetic mutation data in Sri Lankan Duchenne muscular dystrophy (DMD), Spinal muscular atrophy (SMA), Spinocerebellar ataxia (SCA) and Huntington's disease (HD) patients and compare the available literature from South Asian countries to identifying potential candidates for available gene therapy for DMD, SMA, SCA and HD patients. Methods: Rare disease patients (n = 623) with the characteristic clinical findings suspected of HD, SCA, SMA and Muscular Dystrophy were genetically confirmed using Multiplex Ligation Dependent Probe Amplification (MLPA), and single plex PCR. A survey was conducted in the "Wiley database on Gene Therapy Trials Worldwide" to identify DMD, SMA, SCA, and HD gene therapy clinical trials performed worldwide up to April 2021. In order to identify candidates for gene therapy in other neighboring countries we compared our findings with available literature from India and Pakistan which has utilized the same molecular diagnostic protocol to our study. Results: From the overall cohort of 623 rare disease patients with the characteristic clinical findings suspected of HD, SCA, SMA and Muscular Dystrophy, n = 343 (55%) [Muscular Dystrophy- 65%; (DMD-139, Becker Muscular Dystrophy -BMD-11), SCA type 1-3-53% (SCA1-61,SCA2- 23, SCA3- 39), HD- 52% (45) and SMA- 34% (22)] patients were positive for molecular diagnostics by MLPA and single plex PCR. A total of 147 patients in Sri Lanka amenable to available gene therapy; [DMD-83, SMA-15 and HD-49] were identified. A comparison of Sri Lankan finding with available literature from India and Pakistan identified a total of 1257 patients [DMD-1076, SMA- 57, and HD-124] from these three South Asian Countries as amenable for existing gene therapy trials. DMD, SMA, and HD gene therapy clinical trials (113 studies) performed worldwide up to April 2021 were concentrated mostly (99%) in High Income Countries (HIC) and Upper Middle-Income Countries (UMIC). However, studies on the potential use of anti-sense oligonucleotides (ASO) for treatment of SCAs have yet to reach clinical trials. Conclusion: Most genetic therapies for neurodegenerative and neuromuscular disorders have been evaluated for efficacy primarily in Western populations. No multicenter gene therapy clinical trial sites for DMD, SMA and HD in the South Asian region, leading to lack of knowledge on the safety and efficacy of such personalized therapies in other populations, including South Asians. By fostering collaboration between researchers, clinicians, patient advocacy groups, government and industry in gene therapy initiatives for the inherited-diseases community in the developing world would link the Global North and Global South and breathe life into the motto "Together we can make a difference".

7.
ScientificWorldJournal ; 2021: 8898842, 2021.
Article En | MEDLINE | ID: mdl-33679261

Biopiracy as "a silent disease" is hardly detectable because it does not leave traces frequently. The corporate hijacking of food is the most important health hazard in this era; giant commercial enterprises are using intellectual property rights to patent indigenous medicinal plants, seeds, genetic resources, and traditional medicines. The new era of biotechnology relies on the genes of living organisms as raw materials. The "Gene Rush" has thus become similar to that of the old "Gold Rush." Sri Lanka has been spotted in the top 34 biodiversity hotspots globally. Moreover, localized in the tropics, human generations in Sri Lanka have utilized the array of plant species for herbal treatments and treatment of diseases. Sri Lanka after its 30-year civil war is moving towards a solid growth and conservation of the environment which is a major component in a sustainable development where the conservation of biodiversity plays a significant role. In this paper, we present an overview of typical cases of global biopiracy, bioprospecting via introduction of cost-effective deoxyribonucleic acid (DNA) fingerprinting and international protocol with Private-Public-People Partnership concept as excellent forms of utilization of natural resources. We propose certain perspectives as scientists towards abolishing biopiracy and also to foster the fair utilization of natural resources; since the economy of most developing countries is agriculture based, the gross domestic product of the developing countries could be increased by enhanced bioprospecting via introduction of cost-effective DNA fingerprinting technologies and thus not being a pray of corporate hijacking."Biopiracy is biological theft; illegal collection of indigenous plants by corporations who patent them for their own use" (Vandana Shiva).


Conservation of Natural Resources , Medicine, Traditional/trends , Plants, Medicinal , Theft , Agriculture , Biodiversity , Biotechnology , Humans , Seeds/growth & development
9.
Ann Neurosci ; 27(3-4): 91-97, 2020 Jul.
Article En | MEDLINE | ID: mdl-34556946

BACKGROUND: Progressive neurological genetic diseases are not rare. They cause psychosocial damages to its victims. This article focuses on common psychosocial issues faced by those from the developing world. METHODS: A multicentre observational survey of 246 patients from teaching hospitals in Sri Lanka. Participants were clinically and genetically confirmed by neurologists and the Interdisciplinary Centre for Innovation in Biotechnology and Neuroscience (ICIBN) respectively from 2014 to 2018. Convenience sample with random geographical distribution. Factors were equally weighted. ANOVA, Student's t-test and chi-square analysis were used. Statistical Software R Statistics-version 3.5 and one-sample t-test with CI = 95% was used. This study meets the ethical guidelines of the local institutional review boards which are in compliance with the Helsinki Declaration. RESULTS: Sample included 184 males and 62 females of 3-76 years with either Duchenne muscular dystrophy (n=121), spinocerebellar ataxia (n = 87) or Huntington disease (n = 38). Mean income of the affected is lower than the standard average monthly income (P ≤ .001). Consultation visits depend on the monthly income (CI 20421.074-34709.361; P ≤ .001). CONCLUSION: Poverty is inversely proportionate to the patients' living conditions. As developing countries are financially challenged, it is a societal challenge to rebuild our values to enhance their living status.

10.
Dement Geriatr Cogn Disord ; 47(4-6): 198-208, 2019.
Article En | MEDLINE | ID: mdl-31311022

BACKGROUND: Sri Lanka is a rapidly aging country, where dementia prevalence will increase significantly in the future. Thus, inexpensive and sensitive cognitive screening tools are crucial. OBJECTIVES: To assess the reliability, validity, and diagnostic accuracy of the Sinhalese version of the Addenbrooke's Cognitive Examination-Revised (ACE-R s). METHOD: The ACE-R was translated into Sinhala with cultural and linguistic adaptations and administered, together with the Sinhala version of the Montreal Cognitive Assessment (MoCA), to 99 patients with dementia and 93 gender-matched controls. RESULTS: The ACE-R s cutoff score for dementia was 80 (sensitivity 91.9%, specificity 76.3%). The areas under the curve for the ACE-R s, Mini-Mental State Examination (MMSE) and MoCA were 0.90, 0.86, and 0.86, respectively. The -ACE-R s had good interrater reliability (intraclass correlation = 0.94), test-retest reliability (intraclass correlation = 0.99), and internal consistency (Cronbach's α = 0.8442). CONCLUSIONS: The ACE-R s is sensitive, specific and reliable to detect dementia in persons aged ≥50 years in a Sinhala-speaking population and its diagnostic accuracy is superior to previously validated tools (MMSE and MoCA).


Cognition , Dementia/diagnosis , Dementia/psychology , Mental Status and Dementia Tests , Neuropsychological Tests , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Observer Variation , Psychometrics , Reference Values , Reproducibility of Results , Socioeconomic Factors , Sri Lanka , Translations
11.
Ann Neurosci ; 22(2): 108-18, 2015 Apr.
Article En | MEDLINE | ID: mdl-26130916

Existence of conserved domains in dystrophin and its associated complexes provide an opportunity to understand the role of dystrophin associated signalling and its association with neuronal metabolism in a variety of model organisms. We critically reviewed the studies till 2013 through established search engines and databases. Thus, we review the role of dystrophin and its isoforms in different animal models at developmental stages in the neuronal metabolism to enhance the therapeutic strategies. Dystrophin interacts with other proteins in such a way that, when affected, it results in co-morbidities including autism and other neuropsychiatric disorders. It is speculated that various signalling molecules may converge to disrupt neuronal metabolism not adequately studied. TGF-ß, RhoGAP and CAM mediated signalling molecules are the chief cause of mortalities due to respiratory and cardiac involvement but remain underevaluated targets for cognitive impairment in DMD/BMD. Manipulation of these signalling pathways could be potent intervention in dystrophin induced cognitive impairment while complementary therapeutic approaches may also be helpful in the treatment of cognitive impairment associated with DMD/BMD.

...