Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 154: 106522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537609

ABSTRACT

Physiologically modeled test samples with known properties and characteristics, or phantoms, are essential for developing sensitive, repeatable, and accurate quantitative MRI techniques. Magnetic resonance elastography (MRE) is one such technique used to estimate tissue mechanical properties, and it is advantageous to use phantoms with independently tunable mechanical properties to benchmark the accuracy of MRE methods. Phantoms with tunable shear stiffness are commonly used for MRE, but tuning the viscosity or damping ratio has proven to be difficult. A promising candidate for MRE phantoms with tunable damping ratio is polyacrylamide (PAA). While pure PAA has very low attenuation, viscoelastic hydrogels have been made by entrapping linear polyacrylamide strands (LPAA) within the PAA network. In this study, we evaluate the use of LPAA/PAA gels as physiologically accurate phantoms with tunable damping ratio, independent of shear stiffness, via MRE. Phantoms were made with 15.3 wt% PAA while the LPAA concentration ranged from 4.5 wt% to 8.0 wt%. MRE was performed at 9.4 T with 400 Hz vibration on all phantoms revealing a strong, positive correlation between damping ratio and LPAA content (p < 0.001). There was no significant correlation between shear stiffness and LPAA content, confirming a constant PAA concentration yielded constant shear stiffness. Rheometry at 10 Hz was performed to verify the damping ratio of the phantoms. Nearly identical slopes for damping ratio versus LPAA content were found from both MRE and rheometry (0.0073 and 0.0075 respectively). Ultimately, this study validates the adaptation of polyacrylamide gels into physiologically-relevant MRE phantoms to enable testing of MRE estimates of damping ratio.


Subject(s)
Acrylic Resins , Elasticity Imaging Techniques , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging , Phantoms, Imaging , Viscosity
2.
Alcohol Clin Exp Res (Hoboken) ; 48(3): 466-477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225180

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD), a group of prevalent conditions resulting from prenatal alcohol exposure, affect the maturation of cerebral white matter as first identified with neuroimaging. However, traditional methods are unable to track subtle microstructural alterations to white matter. This preliminary study uses a highly sensitive and clinically translatable magnetic resonance elastography (MRE) protocol to assess brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD. METHODS: Female rat pups were either alcohol-exposed (AE) via intragastric intubation of alcohol in milk substitute (5.25 g/kg/day) or sham-intubated (SI) on postnatal days (PD) four through nine to model alcohol exposure during the brain growth spurt. On PD 30, half of AE and SI rats were randomly assigned to either a wheel-running or standard cage for 12 days. Magnetic resonance elastography was used to measure whole brain and callosal mechanical properties at the end of the intervention (around PD 42) and at 1 month post-intervention, and findings were validated with histological quantification of oligoglia. RESULTS: Alcohol exposure reduced forebrain stiffness (p = 0.02) in standard-housed rats. The adolescent exercise intervention mitigated this effect, confirming that increased aerobic activity supports proper neurodevelopmental trajectories. Forebrain damping ratio was lowest in standard-housed AE rats (p < 0.01), but this effect was not mitigated by intervention exposure. At 1 month post-intervention, all rats exhibited comparable forebrain stiffness and damping ratio (p > 0.05). Callosal stiffness and damping ratio increased with age. With cessation of exercise, there was a negative rebound effect on the quantity of callosal oligodendrocytes, irrespective of treatment group, which diverged from our MRE results. CONCLUSIONS: This is the first application of MRE to measure the brain's mechanical properties in a rodent model of FASD. MRE successfully captured alcohol-related changes in forebrain stiffness and damping ratio. Additionally, MRE identified an exercise-related increase to forebrain stiffness in AE rats.

3.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808633

ABSTRACT

Background: Fetal Alcohol Spectrum Disorders (FASD) encompass a group of highly prevalent conditions resulting from prenatal alcohol exposure. Alcohol exposure during the third trimester of pregnancy overlapping with the brain growth spurt is detrimental to white matter growth and myelination, particularly in the corpus callosum, ultimately affecting tissue integrity in adolescence. Traditional neuroimaging techniques have been essential for assessing neurodevelopment in affected youth; however, these methods are limited in their capacity to track subtle microstructural alterations to white matter, thus restricting their effectiveness in monitoring therapeutic intervention. In this preliminary study we use a highly sensitive and clinically translatable Magnetic Resonance Elastography (MRE) protocol for assessing brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD. Methods: Rat pups were divided into two groups: alcohol-exposed (AE) pups which received alcohol in milk substitute (5.25 g/kg/day) via intragastric intubation on postnatal days (PD) four through nine during the rat brain growth spurt (Dobbing and Sands, 1979), or sham-intubated (SI) controls. In adolescence, on PD 30, half AE and SI rats were randomly assigned to either a modified home cage with free access to a running wheel or to a new home cage for 12 days (Gursky and Klintsova, 2017). Previous studies conducted in the lab have shown that 12 days of voluntary exercise intervention in adolescence immediately ameliorated callosal myelination in AE rats (Milbocker et al., 2022, 2023). MRE was used to measure longitudinal changes to mechanical properties of the whole brain and the corpus callosum at intervention termination and one-month post-intervention. Histological quantification of precursor and myelinating oligoglia in corpus callosum was performed one-month post-intervention. Results: Prior to intervention, AE rats had lower forebrain stiffness in adolescence compared to SI controls ( p = 0.02). Exercise intervention immediately mitigated this effect in AE rats, resulting in higher forebrain stiffness post-intervention in adolescence. Similarly, we discovered that forebrain damping ratio was lowest in AE rats in adolescence ( p < 0.01), irrespective of intervention exposure. One-month post-intervention in adulthood, AE and SI rats exhibited comparable forebrain stiffness and damping ratio (p > 0.05). Taken together, these MRE data suggest that adolescent exercise intervention supports neurodevelopmental "catch-up" in AE rats. Analysis of the stiffness and damping ratio of the body of corpus callosum revealed that these measures increased with age. Finally, histological quantification of myelinating oligodendrocytes one-month post-intervention revealed a negative rebound effect of exercise cessation on the total estimate of these cells in the body of corpus callosum, irrespective of treatment group which was not convergent with noninvasive MRE measures. Conclusions: This is the first application of MRE to measure changes in brain mechanical properties in a rodent model of FASD. MRE successfully captured alcohol-related changes to forebrain stiffness and damping ratio in adolescence. These preliminary findings expand upon results from previous studies which used traditional diffusion neuroimaging to identify structural changes to the adolescent brain in rodent models of FASD (Milbocker et al., 2022; Newville et al., 2017). Additionally, in vivo MRE identified an exercise-related alteration to forebrain stiffness that occurred in adolescence, immediately post-intervention.

4.
Phys Med Biol ; 68(4)2023 02 06.
Article in English | MEDLINE | ID: mdl-36652716

ABSTRACT

Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness (µ1), substrate shear stiffness (µ2), shear anisotropy (ϕ), and tensile anisotropy (ζ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase inµ1,ϕ,andζwith increasing muscle length. While in active tension, we observed increasingµ2and decreasingϕandζduring active dorsiflexion and plantarflexion-indicating less anisotropy-with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.


Subject(s)
Elasticity Imaging Techniques , Elasticity Imaging Techniques/methods , Anisotropy , Muscle, Skeletal/diagnostic imaging , Magnetic Resonance Imaging/methods , Biomechanical Phenomena
5.
Article in English | MEDLINE | ID: mdl-36340644

ABSTRACT

Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, µ (range: 2.57 - 3.02 kPa), shear anisotropy, ϕ (range: -0.026 - 0.164), and tensile anisotropy, ζ (range: 0.559 - 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain.

SELECTION OF CITATIONS
SEARCH DETAIL