Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38932616

ABSTRACT

ß-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.

2.
J Med Chem ; 67(6): 4655-4675, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38462716

ABSTRACT

The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signaling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signaling and inhibit the proliferation of RTK-driven cancer cell lines. Here, we describe the first reported fragment-to-lead campaign against SHP2, where X-ray crystallography and biophysical techniques were used to identify fragments binding to multiple sites on SHP2. Structure-guided optimization, including several computational methods, led to the discovery of two structurally distinct series of SHP2 inhibitors binding to the previously reported allosteric tunnel binding site (Tunnel Site). One of these series was advanced to a low-nanomolar lead that inhibited tumor growth when dosed orally to mice bearing HCC827 xenografts. Furthermore, a third series of SHP2 inhibitors was discovered binding to a previously unreported site, lying at the interface of the C-terminal SH2 and catalytic domains.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Mice , Animals , Signal Transduction , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Site
3.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257336

ABSTRACT

Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.


Subject(s)
Cytochrome P-450 CYP1A1 , Cytochrome P450 Family 1 , Humans , Resveratrol/pharmacology , Catalysis , Cell Line, Tumor
4.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387469

ABSTRACT

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacokinetics , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Mas , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 20(10): 1757-1768, 2021 10.
Article in English | MEDLINE | ID: mdl-34330842

ABSTRACT

The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with BRAF or RAS mutations. In vivo, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both in vitro and in vivo models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I-II clinical trial in patients with advanced solid tumors (NCT03520075).


Subject(s)
Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Movement , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
J Med Chem ; 64(7): 4071-4088, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33761253

ABSTRACT

Inhibition of murine double minute 2 (MDM2)-p53 protein-protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.


Subject(s)
Antineoplastic Agents/pharmacology , Isoindoles/pharmacology , Osteosarcoma/drug therapy , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Stability , Female , Humans , Isoindoles/chemical synthesis , Isoindoles/metabolism , Macaca fascicularis , Male , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 29(11): 1403-1406, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30935796

ABSTRACT

As part of a programme to develop anticancer prodrugs which are activated by cytochrome P450 (CYP)1B1, a library of 4,6-diaryl-2-pyridones was synthesised in yields of 6-60% from the corresponding chalcones. A number of these derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing little toxicity towards a non-tumour breast cell line with no CYP expression. Metabolism studies provided evidence supporting the involvement of CYP1 enzymes in the bioactivation of these compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Pyridones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship
8.
J Med Chem ; 61(16): 7314-7329, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30091600

ABSTRACT

Inhibitor of apoptosis proteins (IAPs) are promising anticancer targets, given their roles in the evasion of apoptosis. Several peptidomimetic IAP antagonists, with inherent selectivity for cellular IAP (cIAP) over X-linked IAP (XIAP), have been tested in the clinic. A fragment screening approach followed by structure-based optimization has previously been reported that resulted in a low-nanomolar cIAP1 and XIAP antagonist lead molecule with a more balanced cIAP-XIAP profile. We now report the further structure-guided optimization of the lead, with a view to improving the metabolic stability and cardiac safety profile, to give the nonpeptidomimetic antagonist clinical candidate 27 (ASTX660), currently being tested in a phase 1/2 clinical trial (NCT02503423).


Subject(s)
Antineoplastic Agents/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Piperazines/pharmacology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , ERG1 Potassium Channel/antagonists & inhibitors , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Macaca fascicularis , Male , Mice, Inbred BALB C , Piperazines/chemistry , Piperazines/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays
9.
J Med Chem ; 61(11): 4978-4992, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29775310

ABSTRACT

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Subject(s)
Biocatalysis/drug effects , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Humans , Mice , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Models, Molecular , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics
10.
Mol Cancer Ther ; 17(7): 1381-1391, 2018 07.
Article in English | MEDLINE | ID: mdl-29695633

ABSTRACT

Because of their roles in the evasion of apoptosis, inhibitor of apoptosis proteins (IAP) are considered attractive targets for anticancer therapy. Antagonists of these proteins have the potential to switch prosurvival signaling pathways in cancer cells toward cell death. Various SMAC-peptidomimetics with inherent cIAP selectivity have been tested clinically and demonstrated minimal single-agent efficacy. ASTX660 is a potent, non-peptidomimetic antagonist of cIAP1/2 and XIAP, discovered using fragment-based drug design. The antagonism of XIAP and cIAP1 by ASTX660 was demonstrated on purified proteins, cells, and in vivo in xenograft models. The compound binds to the isolated BIR3 domains of both XIAP and cIAP1 with nanomolar potencies. In cells and xenograft tissue, direct antagonism of XIAP was demonstrated by measuring its displacement from caspase-9 or SMAC. Compound-induced proteasomal degradation of cIAP1 and 2, resulting in downstream effects of NIK stabilization and activation of noncanonical NF-κB signaling, demonstrated cIAP1/2 antagonism. Treatment with ASTX660 led to TNFα-dependent induction of apoptosis in various cancer cell lines in vitro, whereas dosing in mice bearing breast and melanoma tumor xenografts inhibited tumor growth. ASTX660 is currently being tested in a phase I-II clinical trial (NCT02503423), and we propose that its antagonism of cIAP1/2 and XIAP may offer improved efficacy over first-generation antagonists that are more cIAP1/2 selective. Mol Cancer Ther; 17(7); 1381-91. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Mice , Molecular Mimicry , Protein Interaction Domains and Motifs/drug effects , Structure-Activity Relationship , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays
11.
Med Chem ; 14(4): 322-332, 2018.
Article in English | MEDLINE | ID: mdl-29332599

ABSTRACT

BACKGROUND: Although the expression levels of many P450s differ between tumour and corresponding normal tissue, CYP1B1 is one of the few CYP subfamilies which is significantly and consistently overexpressed in tumours. CYP1B1 has been shown to be active within tumours and is capable of metabolising a structurally diverse range of anticancer drugs. Because of this, and its role in the activation of procarcinogens, CYP1B1 is seen as an important target for anticancer drug development. OBJECTIVE: To synthesise a series of chalcone derivatives based on the chemopreventative agent DMU-135 and investigate their antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1. METHOD: A series of chalcones were synthesised in yields of 43-94% using the Claisen-Schmidt condensation reaction. These were screened using a MTT assay against a panel of breast cancer cell lines which have been characterised for CYP1 expression. RESULT: A number of derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing significantly lower toxicity towards a non-tumour breast cell line with no CYP expression. Experiments using the CYP1 inhibitors acacetin and α-naphthoflavone provided supporting evidence for the involvement of CYP1 enzymes in the bioactivation of these compounds. CONCLUSION: Chalcones show promise as anticancer agents with evidence suggesting that CYP1 activation of these compounds may be involved.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcone/analogs & derivatives , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Prodrugs/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Benzoflavones/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chalcone/chemical synthesis , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/toxicity , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/toxicity , Flavones/pharmacology , Humans , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/toxicity
12.
Food Chem Toxicol ; 110: 383-394, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29097115

ABSTRACT

Natural flavonoids with methoxy substitutions are metabolized by CYP1 enzymes to yield the corresponding demethylated products. The present study aimed to characterize the metabolism and further antiproliferative activity of the hydroxylated flavonoids apigenin, luteolin, scutellarein, kaempferol and quercetin in CYP1 recombinant enzymes and in the CYP1 expressing cell lines MCF7 and MDA-MB-468, respectively. Apigenin was converted to luteolin and scutellarein, whereas kaempferol was metabolized only to quercetin by recombinant CYP1 enzymes. Luteolin metabolism yielded 6 hydroxyluteolin only by recombinant CYP1B1, whereas CYP1A1 and CYP1A2 were not capable of metabolizing this compound. Molecular modeling demonstrated that CYP1B1 favored the A ring orientation of apigenin and luteolin to the heme group compared with CYP1A1. The IC50 of the compounds luteolin, scutellarein and 6 hydroxyluteolin was significantly lower in MDA-MB-468, MCF7 and MCF10A cells compared with that of apigenin. Similarly, the IC50 of quercetin in MDA-MB-468 cells was significantly lower compared with that of kaempferol. The most potent compound was luteolin in MDA-MB-468 cells (IC50 = 2 ± 0.3 µM). In the presence of the CYP1-inhibitors α-napthoflavone and/or acacetin, luteolin activation was lessened. Taken collectively, the data demonstrate that the metabolism of hydroxylated flavonoids by cytochrome P450 CYP1 enzymes, notably CYP1A1 and CYP1B1, can enhance their antiproliferative activity in breast cancer cells. In addition, this antiproliferative activity is attributed to the combined action of the parent compound and the corresponding CYP1 metabolites.


Subject(s)
Breast Neoplasms/enzymology , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1B1/metabolism , Flavones/metabolism , Flavonols/metabolism , Breast Neoplasms/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1B1/genetics , Female , Flavones/chemistry , Flavonols/chemistry , Humans , Hydroxylation , Luteolin/chemistry , Luteolin/metabolism , MCF-7 Cells
13.
J Med Chem ; 60(11): 4611-4625, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28492317

ABSTRACT

XIAP and cIAP1 are members of the inhibitor of apoptosis protein (IAP) family and are key regulators of anti-apoptotic and pro-survival signaling pathways. Overexpression of IAPs occurs in various cancers and has been associated with tumor progression and resistance to treatment. Structure-based drug design (SBDD) guided by structural information from X-ray crystallography, computational studies, and NMR solution conformational analysis was successfully applied to a fragment-derived lead resulting in AT-IAP, a potent, orally bioavailable, dual antagonist of XIAP and cIAP1 and a structurally novel chemical probe for IAP biology.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Piperazines/chemistry , Piperazines/pharmacology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Peptidomimetics , Small Molecule Libraries , Structure-Activity Relationship
14.
J Med Chem ; 58(16): 6574-88, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26218264

ABSTRACT

Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/drug effects , Peptide Fragments/pharmacology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Computational Biology , Drug Design , Drug Discovery , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacokinetics , Piperazines/chemical synthesis , Piperazines/pharmacology , Xenograft Model Antitumor Assays
15.
J Med Chem ; 53(14): 5213-28, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20565112

ABSTRACT

Lead optimization studies using 7 as the starting point led to a new class of imidazo[4,5-b]pyridine-based inhibitors of Aurora kinases that possessed the 1-benzylpiperazinyl motif at the 7-position, and displayed favorable in vitro properties. Cocrystallization of Aurora-A with 40c (CCT137444) provided a clear understanding into the interactions of this novel class of inhibitors with the Aurora kinases. Subsequent physicochemical property refinement by the incorporation of solubilizing groups led to the identification of 3-((4-(6-bromo-2-(4-(4-methylpiperazin-1-yl)phenyl)-3H-imidazo[4,5-b]pyridin-7-yl)piperazin-1-yl)methyl)-5-methylisoxazole (51, CCT137690) which is a potent inhibitor of Aurora kinases (Aurora-A IC(50) = 0.015 +/- 0.003 muM, Aurora-B IC(50) = 0.025 muM, Aurora-C IC(50) = 0.019 muM). Compound 51 is highly orally bioavailable, and in in vivo efficacy studies it inhibited the growth of SW620 colon carcinoma xenografts following oral administration with no observed toxicities as defined by body weight loss.


Subject(s)
Imidazoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemical synthesis , Administration, Oral , Animals , Aurora Kinase A , Aurora Kinase B , Aurora Kinase C , Aurora Kinases , Biological Availability , Blood Proteins/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Female , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , In Vitro Techniques , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Protein Binding , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
16.
Mol Cancer Ther ; 6(12 Pt 1): 3147-57, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18089709

ABSTRACT

The Aurora family of serine/threonine kinases is important for the regulation of centrosome maturation, chromosome segregation, and cytokinesis during mitosis. Overexpression of Aurora kinases in mammalian cells leads to genetic instability and transformation. Increased levels of Aurora kinases have also been linked to a broad range of human tumors. Here, we describe the properties of CCT129202, a representative of a structurally novel series of imidazopyridine small-molecule inhibitors of Aurora kinase activity. This compound showed high selectivity for the Aurora kinases over a panel of other kinases tested and inhibits proliferation in multiple cultured human tumor cell lines. CCT129202 causes the accumulation of human tumor cells with >or=4N DNA content, leading to apoptosis. CCT120202-treated human tumor cells showed a delay in mitosis, abrogation of nocodazole-induced mitotic arrest, and spindle defects. Growth of HCT116 xenografts in nude mice was inhibited after i.p. administration of CCT129202. We show that p21, the cyclin-dependent kinase inhibitor, is induced by CCT129202. Up-regulation of p21 by CCT129202 in HCT116 cells led to Rb hypophosphorylation and E2F inhibition, contributing to a decrease in thymidine kinase 1 transcription. This has facilitated the use of 3'-deoxy-3'[(18)F]fluorothymidine-positron emission tomography to measure noninvasively the biological activity of the Aurora kinase inhibitor CCT129202 in vivo.


Subject(s)
Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/pharmacology , Animals , Apoptosis/drug effects , Aurora Kinases , Cell Line, Tumor , Down-Regulation , Enzyme Inhibitors/pharmacokinetics , Enzyme-Linked Immunosorbent Assay , Female , Histones/metabolism , Humans , Mice , Microscopy, Fluorescence , Mitosis/drug effects , Oligonucleotide Array Sequence Analysis , Phosphorylation , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/metabolism
17.
Drug Metab Dispos ; 35(7): 1017-22, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17403917

ABSTRACT

Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in the regulation of Ca(2+) release from inositol 1,4,5-triphosphate-sensitive stores. U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) has been extensively used as a pharmacological inhibitor of PLC to elucidate the importance of this enzyme family in signal transduction pathways. U73122 has an electrophilic maleimide group, which readily reacts with nucleophiles such as thiols and amines. In the current study the conjugation of U73122 to common components of cell culture medium, namely l-glutamine, glutathione, and bovine serum albumin (BSA), was demonstrated. The half-life of U73122 on incubation with phosphate-buffered saline (PBS), Hanks' buffered saline solution (with 2 mM glutamine), optimized basal nutrient medium (MCDB131, without BSA), complete medium, Dulbecco's modified Eagle's medium (with 2 mM l-glutamine) was approximately 150, 60, 32, 30, and 18 min, respectively. However, U73122 was not recoverable from medium supplemented with 0.5% BSA. U73122 underwent hydrolysis of the maleimide group when incubated with PBS. Glutamine conjugates of U73122 were identified in cell culture medium. Furthermore, the inhibition of epidermal growth factor-stimulated Ca(2+) release in a human epidermoid carcinoma cell line (A431) by U73122 was substantially reduced by the presence of BSA in a time-dependent manner. In complex cellular assays, the availability of U73122 to inhibit PLC may be limited by its chemical reactivity and lead to the misinterpretation of results in pharmacological assays.


Subject(s)
Artifacts , Biological Assay , Calcium Signaling/drug effects , Culture Media/chemistry , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Pyrrolidinones/pharmacology , Type C Phospholipases/antagonists & inhibitors , Cell Line, Tumor , Culture Media/metabolism , Drug Stability , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Epidermal Growth Factor/pharmacology , Estrenes/chemistry , Estrenes/metabolism , Glutamine/chemistry , Glutathione/chemistry , Half-Life , Humans , Protein Binding , Pyrrolidinones/chemistry , Pyrrolidinones/metabolism , Serum Albumin, Bovine/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...