Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 144
1.
ACS Chem Biol ; 19(5): 1035-1039, 2024 05 17.
Article En | MEDLINE | ID: mdl-38717306

Red-shifted bioluminescence is highly desirable for diagnostic and imaging applications. Herein, we report a semisynthetic NanoLuc (sNLuc) based on complementation of a split NLuc (LgBiT) with a synthetic peptide (SmBiT) functionalized with a fluorophore for BRET emission. We observed exceptional BRET ratios with diverse fluorophores, notably in the red (I674/I450 > 14), with a brightness that is sufficient for naked eye detection in blood or through tissues. To exemplify its utility, LgBiT was fused to a miniprotein that binds HER2 (affibody, ZHER2), and the selective detection of HER2+ SK-BR-3 cells over HER2- HeLa cells was demonstrated.


Luminescent Measurements , Humans , HeLa Cells , Luminescent Measurements/methods , Luciferases/genetics , Luciferases/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Fluorescent Dyes/chemistry
2.
Nat Biotechnol ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689027

Drugs are administered at a dosing schedule set by their therapeutic index, and termination of action is achieved by clearance and metabolism of the drug. In some cases, such as anticoagulant drugs or immunotherapeutics, it is important to be able to quickly reverse the drug's action. Here, we report a general strategy to achieve on-demand reversibility by designing a supramolecular drug (a noncovalent assembly of two cooperatively interacting drug fragments held together by transient hybridization of peptide nucleic acid (PNA)) that can be reversed with a PNA antidote that outcompetes the hybridization between the fragments. We demonstrate the approach with thrombin-inhibiting anticoagulants, creating very potent and reversible bivalent direct thrombin inhibitors (Ki = 74 pM). The supramolecular inhibitor effectively inhibited thrombus formation in mice in a needle injury thrombosis model, and this activity could be reversed by administration of the PNA antidote. This design is applicable to therapeutic targets where two binding sites can be identified.

3.
JACS Au ; 3(2): 449-458, 2023 Feb 27.
Article En | MEDLINE | ID: mdl-36873687

Pseudo-complementary oligonucleotides contain artificial nucleobases designed to reduce duplex formation in the pseudo-complementary pair without compromising duplex formation to targeted (complementary) oligomers. The development of a pseudo-complementary A:T base pair, Us:D, was important in achieving dsDNA invasion. Herein, we report pseudo-complementary analogues of the G:C base pair leveraged on steric and electrostatic repulsion between the cationic phenoxazine analogue of cytosine (G-clamp, C+) and N-7 methyl guanine (G+), which is also cationic. We show that while complementary peptide nucleic acids (PNA) form a much more stable homoduplex than the PNA:DNA heteroduplex, oligomers based on pseudo-C:G complementary PNA favor PNA:DNA hybridization. We show that this enables dsDNA invasion at physiological salt concentration and that stable invasion complexes are obtained with low equivalents of PNAs (2-4 equiv). We harnessed the high yield of dsDNA invasion for the detection of RT-RPA amplicon using a lateral flow assay (LFA) and showed that two strains of SARS-CoV-2 can be discriminated owing to single nucleotide resolution.

4.
Bioconjug Chem ; 34(1): 111-123, 2023 01 18.
Article En | MEDLINE | ID: mdl-35856656

The specificity and predictability of hybridization make oligonucleotides a powerful platform to program assemblies and networks with logic-gated responses, an area of research which has grown into a field of its own. While the field has capitalized on the commercial availability of DNA oligomers with its four canonical nucleobases, there are opportunities to extend the capabilities of the hardware with unnatural nucleobases and other backbones. This Topical Review highlights nucleobases that favor hybridizations that are empowering for assemblies and networks as well as two chiral XNAs than enable orthogonal hybridization networks.


DNA , Oligonucleotides , Nucleic Acid Hybridization
5.
Angew Chem Int Ed Engl ; 62(9): e202215542, 2023 02 20.
Article En | MEDLINE | ID: mdl-36458812

DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.


DNA , Small Molecule Libraries , DNA/genetics , DNA/chemistry , Small Molecule Libraries/chemistry , Drug Discovery , Ligands , Combinatorial Chemistry Techniques
6.
Chembiochem ; 24(1): e202200561, 2023 01 03.
Article En | MEDLINE | ID: mdl-36349499

Peptidic motifs folded in a defined conformation are able to inhibit protein-protein interactions (PPIs) covering large interfaces and as such they are biomedical molecules of interest. Mimicry of such natural structures with synthetically tractable constructs often requires complex scaffolding and extensive optimization to preserve the fidelity of binding to the target. Here, we present a novel proteomimetic strategy based on a 2-helix binding motif that is brought together by hybridization of peptide nucleic acids (PNA) and stabilized by a rationally positioned intermolecular disulfide crosslink. Using a solid phase synthesis approach (SPPS), the building blocks are easily accessible and such supramolecular peptide-PNA helical hybrids could be further coiled using precise templated chemistry. The elaboration of the structural design afforded high affinity SARS CoV-2 RBD (receptor binding domain) binders without interference with the underlying peptide sequence, creating a basis for a new architecture of supramolecular proteomimetics.


COVID-19 , Peptide Nucleic Acids , Humans , Peptide Nucleic Acids/chemistry , Disulfides , Amino Acid Sequence , Peptides
7.
Biomolecules ; 12(10)2022 10 20.
Article En | MEDLINE | ID: mdl-36291732

Nucleic acids and proteins form two of the key classes of functional biomolecules. Through the ability to access specific protein-oligonucleotide conjugates, a broader range of functional molecules becomes accessible which leverages both the programmability and recognition potential of nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize the available conjugation strategies to access such chimeric molecules and highlight some key case study examples within the field to showcase the power and utility of such technology.


Nucleic Acids , Oligonucleotides , Oligonucleotides/chemistry , Nucleic Acids/chemistry , Proteins
8.
Bioorg Med Chem ; 69: 116883, 2022 09 01.
Article En | MEDLINE | ID: mdl-35772286

Withaferin A, a natural steroidal lactone found in the extracts of Withania somnifera, is used extensively in traditional medicine and part of an ancient remedy in ayurvedic medicine. Prior investigations into its mode of action have shown withaferin to be a polyfunctional pharmacophore with the covalent engagement of a multitude of therapeutic targets. Herein, we report that withaferin A is also a covalent inhibitor of IPO5, an importin that translocates cargos from the cytosol to the nucleus. We show that withaferin inhibits influenza A replication in epithelial cells (A549). Using a panel of inhibitors that selectively recapitulate part of withaferin A's pharmacological profile (goyazensolide, withaferin A derivatives, FiVe1, and bardoxolone methyl), we show that IPO5 inhibition contributes to the influenza replication inhibition but is not essential for the observed activity of withaferin A. We show that bardoxolone methyl, a semisynthetic triterpenoid in clinical development to treat chronic kidney disease and that shares some of the pharmacological profile of withaferin, also inhibits influenza A replication effectively. The inhibitory activity against influenza A replication should stimulate further studies to repurpose this therapeutic.


Influenza, Human , Withania , Withanolides , Humans , Influenza, Human/drug therapy , Oleanolic Acid/analogs & derivatives , Withanolides/pharmacology , Withanolides/therapeutic use , beta Karyopherins
9.
Angew Chem Int Ed Engl ; 61(28): e202203390, 2022 07 11.
Article En | MEDLINE | ID: mdl-35510306

A Ru(bpy)3 Cl2 photocatalyst is applied to the rapid trans to cis isomerization of a range of alkene-containing pharmacological agents, including combretastatin A-4 (CA-4), a clinical candidate in oncology, and resveratrol derivatives, switching their configuration from inactive substances to potent cytotoxic agents. Selective in cellulo activation of the CA-4 analog Res-3M is demonstrated, along with its potent cytotoxicity and inhibition of microtubule dynamics.


Antineoplastic Agents , Stilbenes , Antineoplastic Agents/chemistry , Cytotoxins , Isomerism , Stilbenes/chemistry
10.
Biopolymers ; 113(4): e23485, 2022 Apr.
Article En | MEDLINE | ID: mdl-35023571

The early phase of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was exacerbated by a diagnostic challenge of unprecedented magnitude. In the absence of effective therapeutics or vaccines, breaking the chain of transmission through early disease detection and patient isolation was the only means to control the growing pandemic. While polymerase chain reaction (PCR)-based methods and rapid-antigen tests rose to the occasion, the analytical challenge of rapid and sequence-specific nucleic acid-sensing at a point-of-care or home setting stimulated intense developments. Herein we report a method that combines recombinase polymerase amplification and a DNA-templated reaction to achieve a dual readout with either fluorescence (microtiter plate) or naked eye (lateral flow assay: LFA) detection. The nucleic acid templated reaction is based on an SN Ar that simultaneously transfers biotin from one Peptide Nucleic Acid (PNA) strand to another PNA strand, enabling LFA detection while uncaging a coumarin for fluorescence readout. This methodology has been applied to the detection of a DNA or RNA sequence uniquely attributed to the SARS-CoV-2.


COVID-19 , Nucleic Acids , COVID-19/diagnosis , DNA , Humans , Nucleic Acid Amplification Techniques/methods , Recombinases/genetics , SARS-CoV-2/genetics
11.
Nat Chem ; 14(2): 141-152, 2022 02.
Article En | MEDLINE | ID: mdl-34873299

DNA-encoded library technologies enable the screening of synthetic molecules but have thus far not tapped into the power of Darwinian selection with iterative cycles of selection, amplification and diversification. Here we report a simple strategy to rapidly assemble libraries of conformationally constrained peptides that are paired in a combinatorial fashion (suprabodies). We demonstrate that the pairing can be shuffled after each amplification cycle in a process similar to DNA shuffling or mating to regenerate diversity. Using simulations, we show the benefits of this recombination in yielding a more accurate correlation of selection fitness with affinity after multiple rounds of selection, particularly if the starting library is heterogeneous in the concentration of its members. The method was validated with selections against streptavidin and applied to the discovery of PD-L1 binders. We further demonstrate that the binding of self-assembled suprabodies can be recapitulated by smaller (∼7 kDa) synthetic products that maintain the conformational constraint of the peptides.


DNA/chemistry , Evolution, Chemical , Evolution, Molecular , Synthetic Biology , B7-H1 Antigen/chemistry , DNA/genetics , Drug Discovery/methods , Ligands , Peptide Nucleic Acids/chemistry , Recombination, Genetic , Reproducibility of Results , Small Molecule Libraries/chemistry
12.
Curr Opin Chem Biol ; 66: 102104, 2022 02.
Article En | MEDLINE | ID: mdl-34936943

Nature is predicated on the ability to process large number of parallel signals to produce specific downstream outputs. Biosupramolecular networks are beginning to allow such processing power in synthetic systems, particularly through harnessing the recognition power of biomolecules. Such systems can be summarised through the reductionist view of containing inputs, circuitry motifs and functional outputs, with each of these elements able to be readily combined in a modular approach. Through the inherent 'plug and play' nature of these systems the field continues to rapidly expand, providing a wealth of new smart diagnostic and therapeutic systems.

13.
Chimia (Aarau) ; 75(12): 1004-1011, 2021 Dec 22.
Article En | MEDLINE | ID: mdl-34920768

This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.


Fluorescent Dyes , Membrane Potential, Mitochondrial , Coloring Agents , Microscopy, Fluorescence
14.
J Am Chem Soc ; 143(45): 18932-18940, 2021 11 17.
Article En | MEDLINE | ID: mdl-34739233

Stapled peptides with an enforced α-helical conformation have been shown to overcome major limitations in the development of short peptides targeting protein-protein interactions (PPIs). While the growing arsenal of methodologies to staple peptides facilitates their preparation, stapling methodologies are not broadly embraced in synthetic library screening. Herein, we report a strategy leveraged on hybridization of short PNA-peptide conjugates wherein nucleobase driven assembly facilitates ligation of peptide fragments and constrains the peptide's conformation into an α-helix. Using native chemical ligation, we show that a mixture of peptide fragments can be combinatorially ligated and used directly in affinity selection against a target of interest. This approach was exemplified with a focused library targeting the p-53/MDM2 interaction. One hundred peptides were obtained in a one-pot ligation reaction, selected by affinity against MDM2 immobilized on beads, and the best binders were identified by mass spectrometry.


Peptide Nucleic Acids/metabolism , Peptides/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , Nucleic Acid Hybridization , Peptide Library , Peptide Nucleic Acids/chemistry , Protein Binding/drug effects , Protein Conformation, alpha-Helical , Proto-Oncogene Proteins c-mdm2/chemistry , Tumor Suppressor Protein p53/chemistry
15.
Eur J Clin Invest ; 51(11): e13661, 2021 Nov.
Article En | MEDLINE | ID: mdl-34324704

BACKGROUND: Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN: Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS: Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION: COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.


Antibodies, Viral/immunology , Apolipoprotein A-I/immunology , Autoantibodies/immunology , COVID-19/immunology , Cytokines/immunology , Immunity, Humoral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Apolipoprotein A-I/chemistry , Computational Biology , Epitopes/chemistry , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptides , SARS-CoV-2 , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 2/immunology , Young Adult
16.
ACS Cent Sci ; 7(6): 954-962, 2021 Jun 23.
Article En | MEDLINE | ID: mdl-34235256

Sesquiterpenes are a rich source of covalent inhibitors with a long history in traditional medicine and include several important therapeutics and tool compounds. Herein, we report the total synthesis of 16 sesquiterpene lactones via a build/couple/pair strategy, including goyasensolide. Using an alkyne-tagged cellular probe and proteomics analysis, we discovered that goyazensolide selectively targets the oncoprotein importin-5 (IPO5) for covalent engagement. We further demonstrate that goyazensolide inhibits the translocation of RASAL-2, a cargo of IPO5, into the nucleus and perturbs the binding between IPO5 and two specific viral nuclear localization sequences.

17.
Bioorg Med Chem ; 44: 116282, 2021 08 15.
Article En | MEDLINE | ID: mdl-34216984

A dual Bcl-XL / Bcl-2 inhibitor was discovered from DNA-encoded libraries using a two steps process. In the first step, DNA was used to pair PNA-encoded fragments exploring > 250 000 combinations. In the second step, a focused library combining the selected fragments with linkers of different lengths and geometries led to the identification of tight binding adducts that were further investigated for their selective target engagement in pull-down assays, for their affinity by SPR, and their selectivity in a cytotoxicity assay. The best compound showed comparable cellular activity to venetoclax, the first-in-class therapeutic targeting Bcl-2.


Antineoplastic Agents/pharmacology , DNA/chemistry , Drug Discovery , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , bcl-X Protein/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , K562 Cells , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
18.
Chem Sci ; 12(23): 8218-8223, 2021 May 06.
Article En | MEDLINE | ID: mdl-34194712

The HCR represents a powerful tool for amplification in DNA-based circuitry and sensing applications, yet requires the use of long DNA sequences to grant hairpin metastability. Here we describe a minimal HCR system based on peptide nucleic acids (PNAs). A system comprising a 5-mer stem and 5-mer loop/toehold hairpins was found to be suitable to achieve rapid amplification. These hairpins were shown to yield >10-fold amplification in 2 h and be suitable for the detection of a cancer biomarker on live cells. The use of γ-peg-modified PNA was found to be beneficial.

19.
Angew Chem Int Ed Engl ; 60(35): 19102-19106, 2021 08 23.
Article En | MEDLINE | ID: mdl-34173696

Oligonucleotide phosphorothioates (OPS) are DNA or RNA mimics where one phosphate oxygen is replaced by a sulfur atom. They have been shown to enter mammalian cells much more efficiently than non-modified DNA. Thus, solving one of the key challenges with oligonucleotide technology, OPS became very useful in practice, with several FDA-approved drugs on the market or in late clinical trials. However, the mechanism accounting for this facile cellular uptake is unknown. Here, we show that OPS enter cells by thiol-mediated uptake. The transient adaptive network produced by dynamic covalent pseudo-disulfide exchange is characterized in action. Inhibitors with nanomolar efficiency are provided, together with activators that reduce endosomal capture for efficient delivery of OPS into the cytosol, the site of action.


Biological Transport/physiology , Phosphorothioate Oligonucleotides/metabolism , Sulfhydryl Compounds/metabolism , Endocytosis/physiology , HeLa Cells , Humans , Oxidation-Reduction , Phosphorothioate Oligonucleotides/chemistry , Sulfhydryl Compounds/chemistry
20.
Front Oncol ; 11: 612354, 2021.
Article En | MEDLINE | ID: mdl-33816244

Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences.

...