Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Article En | MEDLINE | ID: mdl-38833208

Genetic mosaicism, characterized by multiple genotypes within an individual, is considered an obstacle to CRISPR/Cas9 genome editing in animal models. Despite the various strategies for minimizing mosaic mutations, no definitive methods exist to eliminate them. This study aimed to enhance gene editing efficiency in porcine zygotes using CRISPR/Cas9, which targets specific genes through centrifugation and zona pellucida removal before electroporation. Centrifugation at 2000 × g did not adversely affect blastocyst formation rates in zygotes electroporated with gRNA targeting the GGTA1 gene; instead, it led to increased total and monoallelic mutation rates compared with control zygotes without centrifugation. However, the groups had no significant differences in biallelic mutation rates. In zygotes electroporated with gRNA targeting the CMAH gene, centrifugation treatments exceeding 1000 × g significantly increased both biallelic mutation rates and mutation efficiency. The combination of centrifugation and zona pellucida removal did not have a detrimental effect on blastocyst formation rates. It led to a higher rate of double biallelic mutations in embryos targeting both GGTA1 and CMAH compared to embryos without centrifugation treatment. In summary, our results demonstrate that pre-electroporation treatments, including centrifugation and zona pellucida removal, positively influenced the reduction of mosaic mutations, with the effectiveness of centrifugation depending on the specific gRNA used.

2.
Animals (Basel) ; 14(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612267

Effective wild cat conservation programs with assisted reproductive technologies are being developed in different parts of the world. The flat-headed cat, fishing cat, and Asiatic golden cat are three species among nine wild Felidae in Thailand that are in need of urgent conservation efforts. Here, we assessed routine sperm characteristics and we report the detection of protein biomarkers related to the fertilization process, IZUMO1 and the CRISP family, and apoptotic markers, active or cleaved caspase-3, in semen samples collected from these wild cats. IZUMO1 was located in the equatorial segment of the sperm head, which is the region involved in gamete interaction. The highest levels of IZUMO1 were found in both the sperm pellet and the seminal plasma of the flat-headed cat, as determined by immunoblotting. CRISP2, a sperm-egg fusion assisting protein, and CRISP3 were found in both the sperm pellet and the seminal plasma, and the highest levels were observed in the fishing cat. Positive correlations between certain semen parameters and IZUMO1, CRISP2, and CRISP3 expression were also demonstrated. Cleaved caspase-3 was found in all sperm samples in all three species and was associated with an increase in DNA fragmentation and a decrease in certain semen characteristics such as motility, viability, and intact acrosomes. Our results suggest that the analysis of IZUMO1, the CRISP family, and cleaved caspase-3, along with the routine sperm characteristics, may allow for better success in breeding management in wild Felidae, particularly in the flat-headed cat and the fishing cat.

3.
Article En | MEDLINE | ID: mdl-38485817

Programmed cell death-1 (PD-1) is an immunoinhibitory receptor required to suppress inappropriate immune responses such as autoimmunity. Immune checkpoint antibodies that augment the PD-1 pathway lead to immune-related adverse events (irAEs), organ non-specific side effects due to autoimmune activation in humans. In this study, we generated a PD-1 mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes to evaluate the PD-1 gene deficiency phenotype. We optimized the efficient guide RNAs (gRNAs) targeting PD-1 in zygotes and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. One recipient gilt became pregnant and gave birth to two piglets. Sequencing analysis revealed that both piglets were biallelic mutants. At 18 mo of age, one pig showed non-purulent arthritis of the left elbow/knee joint and oligozoospermia, presumably related to PD-1 modification. Although this study has a limitation because of the small number of cases, our phenotypic analysis of PD-1 modification in pigs will provide significant insight into human medicine and PD-1-deficient pigs can be beneficial models for studying human irAEs.

4.
Article En | MEDLINE | ID: mdl-38379097

The generation of genetically engineered pig models that develop pancreas-specific tumors has the potential to advance studies and our understanding of pancreatic cancer in humans. TP53 mutation causes organ-nonspecific cancers, and PDX1-knockout results in the loss of pancreas development. The aim of the present study was to generate a PDX1-knockout pig chimera carrying pancreas complemented by TP53 mutant cells via phytohemagglutinin (PHA)-mediated blastomere aggregation using PDX1 and TP53 mutant blastomeres, as a pig model for developing tumors in the pancreas with high frequency. First, the concentration and exposure time to PHA to achieve efficient blastomere aggregation were optimized. The results showed that using 300 µg/mL PHA for 10 min yielded the highest rates of chimeric blastocyst formation. Genotyping analysis of chimeric blastocysts derived from aggregated embryos using PDX1- and TP53-edited blastomere indicated that approximately 28.6% carried mutations in both target regions, while 14.3-21.4% carried mutations in one target. After the transfer of the chimeric blastocysts into one recipient, the recipient became pregnant with three fetuses. Deep sequencing analysis of the PDX1 and TP53 regions using ear and pancreas samples showed that one fetus carried mutations in both target genes, suggesting that the fetus was a chimera derived from embryo-aggregated PDX1 and TP53 mutant blastomeres. Two out of three fetuses carried only the PDX1 mutation, indicating that the fetuses developed from embryos not carrying TP53-edited blastomeres. The results of the present study could facilitate the further improvement and design of high-frequency developing pancreatic tumor models in pigs.

5.
Animals (Basel) ; 13(20)2023 Oct 21.
Article En | MEDLINE | ID: mdl-37894011

The hipposideros larvatus (intermediate roundleaf bat) is one of the insectivorous bats which has an agro-ecological role as a controller of the insect population. The reproductive patterns of H. larvatus are intricately linked to its ecological role and survival. An understanding of the testicular morphology can contribute to conservation for this species particularly in areas where its populations might be declining or under threat. However, these bats may also be associated with zoonotic diseases which can have significant public health implications. The aims of the study were to examine the morphological data as well as the expression of the androgen receptor (AR) and anti-Müllerian hormone (AMH) in the male reproductive organs of H. larvatus from different areas of Thailand and at different sampling periods. Their testes were processed for histological investigation and immunohistochemistry for AR and AMH. The results showed differences among the various sampling areas and different sampling periods, which suggested seasonal breeding characteristics. The higher testicular morphometric data were observed in H. larvatus from the Dong Phayayen (DY) and Chiang Dao (CD) areas during June, while the size of seminiferous tubules decreased thereafter. High AR immunostaining was noticed when the testicular morphometric data were higher in DY bats during June. On the other hand, low AR was observed in bats during August and September, which was concomitant with the decreases in seminiferous tubule size and germinal epithelial height. The results suggest a potential correlation between AR immunostaining and the active phase of testicular functions in H. larvatus during June which may imply the involvement of AR with the enhancement of testicular activity. Conversely, the low expression of AR may contribute to the upregulation of AMH in the testes and may indicate lower testicular activity in H. larvatus in Thailand.

6.
Anim Sci J ; 94(1): e13842, 2023.
Article En | MEDLINE | ID: mdl-37218074

Genetic mosaicism is considered one of the main limitations of the electroporation method used to transfer CRISPR-Cas9/guide RNA (gRNA) into porcine zygotes. We hypothesized that fertilization of oocytes with sperm from gene-deficient boars, in combination with electroporation (EP) to target the same region of the gene in subsequent zygotes, would increase the gene modification efficiency. As myostatin (MSTN) and α1,3-galactosyltransferase (GGTA1) have beneficial effects on agricultural production and xenotransplantation, respectively, we used these two genes to test our hypothesis. Spermatozoa from gene-knockout boars were used for oocyte fertilization in combination with EP to transfer gRNAs targeting the same gene region to zygotes. No significant differences in the rates of cleavage and blastocyst formation as well as in the mutation rates of blastocysts were observed between the wild-type and gene-deficient spermatozoa groups, irrespective of the targeted gene. In conclusion, the combination of fertilization with gene-deficient spermatozoa and gene editing of the same targeted gene region using EP had no beneficial effects on embryo genetic modification, indicating that EP alone is a sufficient tool for genome modification.


Gene Editing , Zygote , Male , Animals , Swine , Gene Editing/veterinary , CRISPR-Cas Systems , Semen , Electroporation/veterinary , RNA, Guide, CRISPR-Cas Systems
7.
Mol Biol Rep ; 50(6): 5049-5057, 2023 Jun.
Article En | MEDLINE | ID: mdl-37101010

BACKGROUND: Pigs are excellent large animal models with several similarities to humans. They provide valuable insights into biomedical research that are otherwise difficult to obtain from rodent models. However, even if miniature pig strains are used, their large stature compared with other experimental animals requires a specific maintenance facility which greatly limits their usage as animal models. Deficiency of growth hormone receptor (GHR) function causes small stature phenotypes. The establishment of miniature pig strains via GHR modification will enhance their usage as animal models. Microminipig is an incredibly small miniature pig strain developed in Japan. In this study, we generated a GHR mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes derived from domestic porcine oocytes and microminipig spermatozoa. METHODS AND RESULTS: First, we optimized the efficiency of five guide RNAs (gRNAs) designed to target GHR in zygotes. Embryos that had been electroporated with the optimized gRNAs and Cas9 were then transferred into recipient gilts. After embryo transfer, 10 piglets were delivered, and one carried a biallelic mutation in the GHR target region. The GHR biallelic mutant showed a remarkable growth-retardation phenotype. Furthermore, we obtained F1 pigs derived from the mating of GHR biallelic mutant with wild-type microminipig, and GHR biallelic mutant F2 pigs through sib-mating of F1 pigs. CONCLUSIONS: We have successfully demonstrated the generation of biallelic GHR-mutant small-stature pigs. Backcrossing of GHR-deficient pig with microminipig will establish the smallest pig strain which can contribute significantly to the field of biomedical research.


CRISPR-Cas Systems , Zygote , Male , Humans , Swine/genetics , Animals , Female , CRISPR-Cas Systems/genetics , Receptors, Somatotropin/genetics , Swine, Miniature , Oocytes
8.
Vet World ; 15(9): 2210-2216, 2022 Sep.
Article En | MEDLINE | ID: mdl-36341066

Background and Aim: Mosaicism - the presence of both wild-type and mutant alleles - is a serious problem for zygotic gene modification through gene editing using the Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR/Cas9) system. Different delivery methods, such as microinjection (MI), electroporation (EP), and transfection (TF), can be used to transfer CRISPR/Cas9 components into porcine zygotes. This study aimed to develop a method that combines MI, EP, and TF to improve mutation efficiency mediated through the CRISPR/Cas9 system for a triple-gene knockout in pigs. Materials and Methods: The study consisted of three groups: The MI group with three simultaneously microinjected guide RNAs (gRNAs) targeting α-1,3-galactosyltransferase (GGTA1), cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and ß-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2); the MI + EP group with two gRNAs targeting GGTA1 and B4GALNT2 genes delivered into zygotes through MI, followed by EP of gRNA targeting the CMAH 1 h later; and the MI + EP + TF group with MI of gRNA targeting GGTA1 gene into zygotes, followed by EP of gRNA targeting CMAH 1 h later, and then TF of gRNA targeting the B4GALNT2 gene into zona-free zygotes after another hour. Results: The rate of blastocysts carrying mutations in one or two gene(s) was significantly higher in the MI + EP + TF group than in the MI group. However, the blastocyst formation rate of zygotes in the MI + EP + TF group was lower than that of the zygotes in the other treatment groups. Conclusion: The combination of CRISPR/Cas9 delivery methods may improve the mutation efficiency of triple-gene edited porcine blastocysts.

9.
Cryobiology ; 109: 30-36, 2022 12.
Article En | MEDLINE | ID: mdl-36191622

The present study evaluated the effects of water-soluble curcuminoid-rich extract in a solid dispersion form (CRE-SD) on goat sperm qualities and sperm protein CSNK2A2 expression during liquid storage. Semen was collected from five fertile goats, using an artificial vagina. Ejaculates with a motility above 70% were cooled to 4 °C using TRIS-citric acid-fructose diluent with 10% egg yolk containing various concentrations of CRE-SD (0, 0.1, 1, 10 and 100 µg/mL). Chilled sperm were evaluated for sperm characteristics, casein kinase II catalytic subunit alpha (CSNK2A2) protein level and oxidative status up to 15 days. After 12 days of preservation, sperm motility, viability, acrosomal integrity and mitochondrial activity were significantly higher in the group preserved with 10 µg/mL CRE-SD as compared with the control group. Supplementation of CRE-SD at this concentration was also able to conserve the CSNK2A2 a significantly higher than that in control group until 9 days of cold storage, possibly by reducing oxidative stress. The molecular mass of the sperm CSNK2A2 protein detected in this study was 37 kDa; it was mostly located in the post-acrosomal region, midpiece and flagellum. These results demonstrate the possibility to use the CRE-SD as a natural antioxidant during liquid semen storage in goats.


Semen Preservation , Semen , Animals , Female , Male , Sperm Motility , Semen Preservation/veterinary , Semen Preservation/methods , Goats , Cryopreservation/methods , Diarylheptanoids/pharmacology , Longevity , Water , Casein Kinase II/pharmacology , Catalytic Domain , Spermatozoa , Protein Stability
10.
Reprod Domest Anim ; 57(10): 1136-1142, 2022 Oct.
Article En | MEDLINE | ID: mdl-35699358

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology is growing rapidly and has been greatly influencing the efficiency and effectiveness of genetic modifications in different applications. One aspect of research gaining importance in the development of the CRISPR/Cas9 system is the introduction of CRISPR materials into target organisms. Although we previously demonstrated the efficacy of electroporation- and lipofection-mediated CRISPR/Cas9 gene disruption in porcine zygotes, we still believe that the efficiency of this system could be improved by combining these two methods. The present study was thus conducted to clarify the effects of a combination of electroporation and lipofection for delivering CRISPR/Cas9 components into zona pellucida (ZP)-intact and -free zygotes. The results revealed that electroporation alone significantly increased the biallelic mutation rates in the resulting blastocysts compared to lipofection alone, irrespective of the presence of ZP. None of ZP-intact zygotes treated by lipofectamine alone had any mutations, suggesting that removal of the ZP is necessary for enabling CRISPR/Cas9-based genome editing via lipofection treatment in the zygotes. Additional lipofectamine treatment after electroporation did not improve the rates of total and biallelic mutations in the resulting blastocysts derived from either ZP-intact or -free zygotes.


CRISPR-Associated Protein 9 , Gene Editing , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Electroporation/methods , Electroporation/veterinary , Gene Editing/methods , Gene Editing/veterinary , Swine , Transfection/veterinary , Zygote
11.
Reprod Domest Anim ; 57(9): 999-1006, 2022 Sep.
Article En | MEDLINE | ID: mdl-35614560

The balance between proliferation, differentiation and apoptosis is well-coordinated in spermatogenesis for the timely production of appropriate numbers of sperm in animals. Disruption or decrease in sperm production is due to many conditions, including changes in testicular cell fate balance. Interspecies hybridization of domestic yaks and cattle results in sterility in males because of spermatogenic arrest; however, the underlying mechanisms involved in sterility are still unclear. In the present study, we investigated the proliferation and apoptosis status during the development of yaks and crossbred cattle-yaks using immunohistochemistry of proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assays. Testicular tissues from yaks (immature: 1 year old, mature: 2-3 years old) and backcrossed hybrids (2 year old) were collected and used to investigate the expression of each parameter in testicular cells. During the maturation of yak testes, proliferation and apoptosis became active only in spermatogenic cells, and not in other somatic cells, such as Sertoli cells, myoid cells and Leydig cells. Furthermore, hybrid cattle-yak testes maintained proliferation ability but less apoptotic ability in spermatogenic cells when compared to yaks of the same age, suggesting that normal spermatogenic cell fate control is disrupted by changes in the balance between proliferation and apoptosis. In addition, Leydig cell proliferation rate was higher than apoptosis rate in the cattle-yak testes, indicating an increased number of Leydig cells, which may affect spermatogenesis through changes in steroidogenesis. Although epigenetic changes may be involved in cattle-yak testes, further studies are needed to clarify the modulation of proliferation and apoptosis to elucidate the mechanisms of infertility in hybrid cattle-yak males.


Azoospermia , Cattle Diseases , Animals , Apoptosis , Azoospermia/veterinary , Cattle , Cattle Diseases/metabolism , Cell Proliferation , Male , Semen , Spermatogenesis , Testis/metabolism
12.
Vet World ; 15(2): 496-501, 2022 Feb.
Article En | MEDLINE | ID: mdl-35400948

Background and Aim: We previously developed the gene-editing by electroporation (EP) of Cas9 protein method, in which the CRISPR/Cas9 system was introduced into porcine in vitro fertilized (IVF) zygotes through EP to disrupt a target gene. This method should be further developed, and a combination of EP and MI methods should be evaluated in pigs. This study aimed to determine that a combination of microinjection (MI) and EP of CRISPR/Cas9 system could increase the rates of biallelic mutation for triple-gene knockout in porcine blastocysts. We targeted the pancreatic and duodenal homeobox1 (PDX1) gene using cytoplasmic MI 1 h before or after EP, which was used to edit alpha-1,3-galactosyltransferase (GGTA1) and cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes in porcine zygotes. Materials and Methods: We introduced guide RNAs targeting PDX1, GGTA1, and CMAH with the Cas9 protein into IVF zygotes (one-cell stage) through EP 10 h after the start of IVF (IVF; EP group) or in combination with MI (1 h before, MI-EP group, or after EP treatment EP-MI group) and evaluated the blastocyst formation rate and efficiency of target mutations in the resulting blastocysts. Results: Our results revealed a significant reduction in the rate of blastocyst formation in the two groups that underwent MI before and after EP (MI-EP and EP-MI group), compared with that in the groups treated with EP alone (EP group) (p=0.0224 and p<0.0001, respectively) and control (p=0.0029 and p<0.0001, respectively). There was no significant difference in the total mutation rates among the treatment groups in the resulting blastocysts. As an only positive effect of additional MI treatment, the rate of blastocysts carrying biallelic mutations in at least one target gene was higher in the MI-EP group than in the EP group. However, there was no difference in the rates of embryos carrying biallelic mutations in more than 2 target genes. Conclusion: These results indicate that although a combination of MI and EP does not improve the mutation efficiency or biallelic mutation for triple-gene knockout, MI treatment before EP is better to reduce mortality in porcine zygotic gene editing through a combination of MI and EP.

13.
Vet Anim Sci ; 16: 100241, 2022 Jun.
Article En | MEDLINE | ID: mdl-35265771

Mosaicism, including alleles comprising both wild-type and mutant, is a serious problem for gene modification by gene editing using electroporation. One-step generation of F0 pigs with completely desired gene modifications saves cost and time, but the major obstacles have been mosaic mutations. We hypothesized that the timing of electroporation prior to in vitro fertilization (IVF) can increase the rates of biallelic mutation for multiple gene knockout as the permeability of mature oocytes is greater than that of zygotes. Hence, we determined whether the timing of electroporation during in vitro maturation (IVM) culture enhances triple gene editing in the resulting blastocysts. Three gRNAs targeting KDR, PDX1, and SALL1 were simultaneously introduced into the oocytes that had been incubated for 40, 42, and 44 h from the start of the IVM culture. Electroporation with three gRNAs at 40 h and 42 h during IVM culture decreased the blastocyst formation rates and did not improve the mutation rates and target number of biallelic mutations in the resulting blastocysts. The blastocyst formation rate, mutation rates, and target numbers in the resulting blastocysts from oocytes treated by electroporation at 44 h of IVM culture were similar to those of control zygotes electroporated at 13 h after the initiation of IVF. In conclusion, multiple gene editing efficiency in the resulting blastocysts was comparable between oocytes electroporated before and after the fertilization, indicating that oocytes with completed maturation time may allow better functioning of materials accepting gene editing application.

14.
Anim Reprod Sci ; 237: 106926, 2022 Feb.
Article En | MEDLINE | ID: mdl-35066238

Sperm IZUMO1 protein was recently found to be a crucial mediator in the interaction and fusion with eggs, indicating an important role in assuring the favourable outcome from long-term preservation of chilled semen. The purpose of this study was to investigate whether supplementation of chilled semen extender with green tea polyphenols together with α-tocopherol would provide synergistic effects to prolong sperm survival and maintain IZUMO1 protein stability in cat spermatozoa. Sperm samples were collected from the cat epididymis before being diluted with semen extender containing various concentrations of α-tocopherol (0, 2.5, 5 and 7.5 µg/ml) and 0.75 mg/ml green tea polyphenols and cooled to 4 °C. One sample without antioxidants served as a control. Sperm characteristics and IZUMO1 protein expression were investigated before and after chilling at 3, 6, 9, 12 and 15 days. Using α-tocopherol at 5 µg/ml together with 0.75 mg/ml green tea polyphenols in the semen extender is the most suitable condition to retain the sperm characteristics up to nine days of preservation. Cat IZUMO1 proteins, 17 kDa, were identified at the equatorial segment of acrosome reacted sperm. Without antioxidant, cold storage can gradually degrade the IZUMO1 protein level. Sperm IZUMO1 protein was markedly conserved by supplementation of 5 µg/ml α-tocopherol together with 0.75 mg/ml green tea polyphenols up to 12 days in cold storage. These findings indicate that green tea polyphenols and α-tocopherol have protective effects on the preservation of sperm characteristics and IZUMO1 protein integrity of cat epididymal sperm during long-term chilling.


Semen Preservation , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cryopreservation/veterinary , Male , Ovum , Polyphenols/metabolism , Polyphenols/pharmacology , Semen Preservation/veterinary , Sperm Motility , Spermatozoa , Tea/metabolism , alpha-Tocopherol/pharmacology
15.
Reprod Domest Anim ; 57(3): 304-313, 2022 Mar.
Article En | MEDLINE | ID: mdl-34854139

Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.


Cattle Diseases , Infertility, Male , Acetylation , Animals , Cattle , Cattle Diseases/metabolism , DNA Methylation , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/veterinary , Male , Spermatogenesis/genetics , Testis/metabolism
16.
Sci Rep ; 11(1): 23806, 2021 12 13.
Article En | MEDLINE | ID: mdl-34903813

The specificity and efficiency of CRISPR/Cas9 gene-editing systems are determined by several factors, including the mode of delivery, when applied to mammalian embryos. Given the limited time window for delivery, faster and more reliable methods to introduce Cas9-gRNA ribonucleoprotein complexes (RNPs) into target embryos are needed. In pigs, somatic cell nuclear transfer using gene-modified somatic cells and the direct introduction of gene editors into the cytoplasm of zygotes/embryos by microinjection or electroporation have been used to generate gene-edited embryos; however, these strategies require expensive equipment and sophisticated techniques. In this study, we developed a novel lipofection-mediated RNP transfection technique that does not require specialized equipment for the generation of gene-edited pigs and produced no detectable off-target events. In particular, we determined the concentration of lipofection reagent for efficient RNP delivery into embryos and successfully generated MSTN gene-edited pigs (with mutations in 7 of 9 piglets) after blastocyst transfer to a recipient gilt. This newly established lipofection-based technique is still in its early stages and requires improvements, particularly in terms of editing efficiency. Nonetheless, this practical method for rapid and large-scale lipofection-mediated gene editing in pigs has important agricultural and biomedical applications.


Gene Editing/methods , Mutation , Swine/genetics , Transfection/methods , Animals , Blastocyst/drug effects , Blastocyst/metabolism , CRISPR-Cas Systems , Gene Editing/veterinary , Lipids/pharmacology , Myostatin/genetics , Myostatin/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Transfection/veterinary
17.
BMC Res Notes ; 14(1): 389, 2021 Oct 09.
Article En | MEDLINE | ID: mdl-34627381

OBJECTIVE: Lipofection-mediated introduction of the CRISPR/Cas9 system in porcine zygotes provides a simple method for gene editing, without requiring micromanipulation. However, the gene editing efficiency is inadequate. The aim of this study was to improve the lipofection-mediated gene editing efficiency by optimizing the timing and duration of lipofection. RESULTS: Zona pellucida (ZP)-free zygotes collected at 5, 10, and 15 h from the start of in vitro fertilization (IVF) were incubated with lipofection reagent, guide RNA (gRNA) targeting GGTA1, and Cas9 for 5 h. Lipofection of zygotes collected at 10 and 15 h from the start of IVF yielded mutant blastocysts. Next, ZP-free zygotes collected at 10 h from the start of IVF were incubated with lipofection reagent, gRNA, and Cas9 for 2.5, 5, 10, or 20 h. The blastocyst formation rate of zygotes treated for 20 h was significantly lower (p < 0.05) than those of the other groups, and no mutant blastocysts were obtained. Moreover, the mutation rates of the resulting blastocysts decreased as the incubation time increased. In conclusion, a lipofection-mediated gene editing system using the CRISPR/Cas9 system in ZP-zygotes is feasible; however, further improvements in the gene editing efficiency are required.


Gene Editing , Zygote , Animals , Blastocyst , CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida , Swine
18.
Theriogenology ; 172: 106-115, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34153566

The Malayan tapir is a large endangered herbivore native to South-east Asia with fewer than 2500 animals remaining in the wild. Although a small number of animals (183 animals held by 60 institutions) are managed in zoos and breeding centres, there is limited information on the fundamental reproductive biology of this species. The purpose of this present study was to evaluate the associations of reproductive protein biomarkers (CRISP2 and CRISP3) in the seminal plasma and spermatozoa with reproductive characteristics in male Malayan tapirs. Ejaculates were collected from zoo-housed animals by electroejaculation and assessed for sperm motility and quality traits. Seminal plasma and sperm pellets were analysed for CRISP protein expression by immunoblotting. The reproductive tract of a single animal was also analysed for CRISP2 and CRISP3 protein expression and localization by immunohistochemistry. Our results showed that both CRISP2 and CRISP3 are expressed in the seminal plasma and spermatozoa derived from Malayan tapirs. CRISP expression was positively correlated with semen quality, especially ejaculate volume, number of motile sperm, and acrosomal integrity. In addition, CRISP2 and CRISP3 protein expression were slightly high in males that had recently sired an offspring. The results suggest that CRISP proteins may serve as biomarkers for ejaculate quality and fertility in male Malayan tapirs. These findings may have significant implications for planning future breeding and re-introduction efforts for this species.


Semen Analysis , Semen , Animals , Male , Perissodactyla , Semen Analysis/veterinary , Sperm Motility , Spermatozoa
19.
Animals (Basel) ; 11(2)2021 Feb 23.
Article En | MEDLINE | ID: mdl-33672168

Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, how this system functions in mammalian oocytes and embryos remains unclear. The present study was conducted to clarify whether blastocyst genome editing can be performed by treatment with lipofection reagent, guide RNA, and Cas9 for 5 h without using electroporation or microinjection. A mosaic mutation was observed in blastocysts derived from zona pellucida (ZP)-free oocytes following lipofection treatment, regardless of the target genes. When lipofection treatment was performed after in vitro fertilization (IVF), no significant differences in the mutation rates or mutation efficiency were found between blastocysts derived from embryos treated at 24 and 29 h from the start of IVF. Only blastocysts from embryos exposed to lipofection treatment at 29 h after IVF contained biallelic mutant. Furthermore, there were no significant differences in the mutation rates or mutation efficiency between blastocysts derived from embryos at the 2- and 4-cell stages. This suggests that lipofection-mediated gene editing can be performed in ZP-free oocytes and ZP-free embryos; however, other factors affecting the system efficiency should be further investigated.

20.
Anim Sci J ; 92(1): e13534, 2021.
Article En | MEDLINE | ID: mdl-33638256

This study aimed to investigate the efficiency of KRAS gene editing via CRISPR/Cas9 delivery by electroporation and analyzed the effects of the non-homologous end-joining pathway inhibitor Scr7 and single-stranded oligodeoxynucleotide (ssODN) homology arm length on introducing a point mutation in KRAS. Various concentrations (0-2 µM) of Scr7 were evaluated; all concentrations of Scr7 including 0 µM resulted in the generation of blastocysts with a point mutation and the wild-type sequence or indels. No significant differences in the blastocyst formation rates of electroporated zygotes were observed among ssODN homology arm lengths, irrespective of the gRNA (gRNA1 and gRNA2). The proportion of blastocysts carrying a point mutation with or without the wild-type sequence and indels was significantly higher in the ssODN20 group (i.e., the group with a ssODN homology arm of 20 bp) than in the ssODN60 group (gRNA1: 25.7% vs. 5.4% and gRNA2: 45.5% vs. 5.9%, p < .05). In conclusion, the CRISPR/Cas9 delivery with ssODN via electroporation is feasible for the generation of point mutations in porcine embryos. Further studies are required to improve the efficiency and accuracy of the homology-directed repair.


CRISPR-Cas Systems , Electroporation/methods , Fertilization in Vitro/veterinary , Gene Editing/methods , Gene Editing/veterinary , Oligodeoxyribonucleotides , Point Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Swine/embryology , Swine/genetics , Zygote , Animals , Blastocyst
...