Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Eur Radiol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849662

ABSTRACT

Ovarian masses encompass various conditions, from benign to highly malignant, and imaging plays a vital role in their diagnosis and management. Ultrasound, particularly transvaginal ultrasound, is the foremost diagnostic method for adnexal masses. Magnetic Resonance Imaging (MRI) is advised for more precise characterisation if ultrasound results are inconclusive. The ovarian-adnexal reporting and data system (O-RADS) MRI lexicon and scoring system provides a standardised method for describing, assessing, and categorising the risk of each ovarian mass. Determining a histological differential diagnosis of the mass may influence treatment decision-making and treatment planning. When ultrasound or MRI suggests the possibility of cancer, computed tomography (CT) is the preferred imaging technique for staging. It is essential to outline the extent of the malignancy, guide treatment decisions, and evaluate the feasibility of cytoreductive surgery. This article provides a comprehensive overview of the key imaging processes in evaluating and managing ovarian masses, from initial diagnosis to initial treatment. It also includes pertinent recommendations for properly performing and interpreting various imaging modalities. KEY POINTS: MRI is the modality of choice for indeterminate ovarian masses at ultrasound, and the O-RADS MRI lexicon and score enable unequivocal communication with clinicians. CT is the recommended modality for suspected ovarian masses to tailor treatment and surgery. Multidisciplinary meetings integrate information and help decide the most appropriate treatment for each patient.

2.
Eur Radiol Exp ; 8(1): 75, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853182

ABSTRACT

BACKGROUND: To study the reproducibility of 23Na magnetic resonance imaging (MRI) measurements from breast tissue in healthy volunteers. METHODS: Using a dual-tuned bilateral 23Na/1H breast coil at 3-T MRI, high-resolution 23Na MRI three-dimensional cones sequences were used to quantify total sodium concentration (TSC) and fluid-attenuated sodium concentration (FASC). B1-corrected TSC and FASC maps were created. Two readers manually measured mean, minimum and maximum TSC and mean FASC values using two sampling methods: large regions of interest (LROIs) and small regions of interest (SROIs) encompassing fibroglandular tissue (FGT) and the highest signal area at the level of the nipple, respectively. The reproducibility of the measurements and correlations between density, age and FGT apparent diffusion coefficient (ADC) values were evaluatedss. RESULTS: Nine healthy volunteers were included. The inter-reader reproducibility of TSC and FASC using SROIs and LROIs was excellent (intraclass coefficient range 0.945-0.979, p < 0.001), except for the minimum TSC LROI measurements (p = 0.369). The mean/minimum LROI TSC and mean LROI FASC values were lower than the respective SROI values (p < 0.001); the maximum LROI TSC values were higher than the SROI TSC values (p = 0.009). TSC correlated inversely with age but not with FGT ADCs. The mean and maximum FGT TSC and FASC values were higher in dense breasts in comparison to non-dense breasts (p < 0.020). CONCLUSIONS: The chosen sampling method and the selected descriptive value affect the measured TSC and FASC values, although the inter-reader reproducibility of the measurements is in general excellent. RELEVANCE STATEMENT: 23Na MRI at 3 T allows the quantification of TSC and FASC sodium concentrations. The sodium measurements should be obtained consistently in a uniform manner. KEY POINTS: • 23Na MRI allows the quantification of total and fluid-attenuated sodium concentrations (TSC/FASC). • Sampling method (large/small region of interest) affects the TSC and FASC values. • Dense breasts have higher TSC and FASC values than non-dense breasts. • The inter-reader reproducibility of TSC and FASC measurements was, in general, excellent. • The results suggest the importance of stratifying the sodium measurements protocol.


Subject(s)
Breast , Magnetic Resonance Imaging , Sodium , Humans , Female , Reproducibility of Results , Adult , Magnetic Resonance Imaging/methods , Breast/diagnostic imaging , Middle Aged , Sodium Isotopes , Healthy Volunteers , Observer Variation , Young Adult
3.
Magn Reson Imaging ; 110: 1-6, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38479541

ABSTRACT

PURPOSE: This pilot-study aims to assess, whether quantitatively assessed enhancing breast tissue as a percentage of the entire breast volume can serve as an indicator of breast cancer at breast MRI and whether the contrast-agent employed affects diagnostic efficacy. MATERIALS: This retrospective IRB-approved study, included 39 consecutive patients, that underwent two subsequent breast MRI exams for suspicious findings at conventional imaging with 0.1 mmol/kg gadobenic and gadoteric acid. Two independent readers, blinded to the histopathological outcome, assessed unenhanced and early post-contrast images using computer-assisted software (Brevis, Siemens Healthcare). Diagnostic performance was statistically determined for percentage of ipsilateral voxel volume enhancement and for percentage of contralateral enhancing voxel volume subtracted from ipsilateral enhancing voxel volume after crosstabulation with the dichotomized histological outcome (benign/malignant). RESULTS: Ipsilateral enhancing voxel volume versus histopathological outcome resulted in an AUC of 0.707 and 0.687 for gadobenic acid, reader 1 and 2, respectively and in an AUC of 0.778 and 0.773 for gadoteric acid, reader 1 and 2, respectively. Accounting for background parenchymal enhancement by subtracting contralateral enhancing volume from ipsilateral enhancing voxel volume versus histolopathological outcome resulted in an AUC of 0.793 and 0.843 for gadobenic acid, reader 1 and 2, respectively and in an AUC of 0.692 and 0.662 for gadoteric acid, reader 1 and 2, respectively. Pairwise testing yielded no statistically significant difference both between readers and between contrast agents employed (p > 0.05). CONCLUSION: Our proposed CAD algorithm, which quantitatively assesses enhancing breast tissue as a percentage of the entire breast volume, allows indicating the presence of breast cancer.


Subject(s)
Breast Neoplasms , Breast , Contrast Media , Magnetic Resonance Imaging , Organometallic Compounds , Humans , Breast Neoplasms/diagnostic imaging , Female , Pilot Projects , Magnetic Resonance Imaging/methods , Middle Aged , Adult , Retrospective Studies , Aged , Breast/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Meglumine/analogs & derivatives , Reproducibility of Results , Algorithms , Sensitivity and Specificity
4.
Sci Data ; 11(1): 295, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486039

ABSTRACT

In computational pathology, automatic nuclei instance segmentation plays an essential role in whole slide image analysis. While many computerized approaches have been proposed for this task, supervised deep learning (DL) methods have shown superior segmentation performances compared to classical machine learning and image processing techniques. However, these models need fully annotated datasets for training which is challenging to acquire, especially in the medical domain. In this work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent the parts of the images where precise and deterministic manual annotations are impossible, even for human experts. The dataset and detailed step-by-step instructions to generate related segmentation masks are publicly available on the respective repositories.


Subject(s)
Cell Nucleus , Machine Learning , Animals , Humans , Mice , Cell Nucleus/pathology , Image Processing, Computer-Assisted/methods , Staining and Labeling
5.
Eur Radiol ; 34(8): 5120-5130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38206405

ABSTRACT

OBJECTIVES: To assess radiologists' current use of, and opinions on, structured reporting (SR) in oncologic imaging, and to provide recommendations for a structured report template. MATERIALS AND METHODS: An online survey with 28 questions was sent to European Society of Oncologic Imaging (ESOI) members. The questionnaire had four main parts: (1) participant information, e.g., country, workplace, experience, and current SR use; (2) SR design, e.g., numbers of sections and fields, and template use; (3) clinical impact of SR, e.g., on report quality and length, workload, and communication with clinicians; and (4) preferences for an oncology-focused structured CT report. Data analysis comprised descriptive statistics, chi-square tests, and Spearman correlation coefficients. RESULTS: A total of 200 radiologists from 51 countries completed the survey: 57.0% currently utilized SR (57%), with a lower proportion within than outside of Europe (51.0 vs. 72.7%; p = 0.006). Among SR users, the majority observed markedly increased report quality (62.3%) and easier comparison to previous exams (53.5%), a slightly lower error rate (50.9%), and fewer calls/emails by clinicians (78.9%) due to SR. The perceived impact of SR on communication with clinicians (i.e., frequency of calls/emails) differed with radiologists' experience (p < 0.001), and experience also showed low but significant correlations with communication with clinicians (r = - 0.27, p = 0.003), report quality (r = 0.19, p = 0.043), and error rate (r = - 0.22, p = 0.016). Template use also affected the perceived impact of SR on report quality (p = 0.036). CONCLUSION: Radiologists regard SR in oncologic imaging favorably, with perceived positive effects on report quality, error rate, comparison of serial exams, and communication with clinicians. CLINICAL RELEVANCE STATEMENT: Radiologists believe that structured reporting in oncologic imaging improves report quality, decreases the error rate, and enables better communication with clinicians. Implementation of structured reporting in Europe is currently below the international level and needs society endorsement. KEY POINTS: • The majority of oncologic imaging specialists (57% overall; 51% in Europe) use structured reporting in clinical practice. • The vast majority of oncologic imaging specialists use templates (92.1%), which are typically cancer-specific (76.2%). • Structured reporting is perceived to markedly improve report quality, communication with clinicians, and comparison to prior scans.


Subject(s)
Attitude of Health Personnel , Neoplasms , Radiologists , Societies, Medical , Humans , Europe , Surveys and Questionnaires , Neoplasms/diagnostic imaging , Radiologists/statistics & numerical data , Radiology Information Systems/statistics & numerical data
6.
Comput Struct Biotechnol J ; 23: 669-678, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38292472

ABSTRACT

With the advent of digital pathology and microscopic systems that can scan and save whole slide histological images automatically, there is a growing trend to use computerized methods to analyze acquired images. Among different histopathological image analysis tasks, nuclei instance segmentation plays a fundamental role in a wide range of clinical and research applications. While many semi- and fully-automatic computerized methods have been proposed for nuclei instance segmentation, deep learning (DL)-based approaches have been shown to deliver the best performances. However, the performance of such approaches usually degrades when tested on unseen datasets. In this work, we propose a novel method to improve the generalization capability of a DL-based automatic segmentation approach. Besides utilizing one of the state-of-the-art DL-based models as a baseline, our method incorporates non-deterministic train time and deterministic test time stain normalization, and ensembling to boost the segmentation performance. We trained the model with one single training set and evaluated its segmentation performance on seven test datasets. Our results show that the proposed method provides up to 4.9%, 5.4%, and 5.9% better average performance in segmenting nuclei based on Dice score, aggregated Jaccard index, and panoptic quality score, respectively, compared to the baseline segmentation model.

8.
Comput Struct Biotechnol J ; 23: 52-63, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38125296

ABSTRACT

Manual delineation of volumes of interest (VOIs) by experts is considered the gold-standard method in radiomics analysis. However, it suffers from inter- and intra-operator variability. A quantitative assessment of the impact of variations in these delineations on the performance of the radiomics predictors is required to develop robust radiomics based prediction models. In this study, we developed radiomics models for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with two different breast cancer subtypes based on contrast-enhanced magnetic resonance imaging acquired prior to treatment (baseline MRI scans). Different mathematical operations such as erosion, smoothing, dilation, randomization, and ellipse fitting were applied to the original VOIs delineated by experts to simulate variations of segmentation masks. The effects of such VOI modifications on various steps of the radiomics workflow, including feature extraction, feature selection, and prediction performance, were evaluated. Using manual tumor VOIs and radiomics features extracted from baseline MRI scans, an AUC of up to 0.96 and 0.89 was achieved for human epidermal growth receptor 2 positive and triple-negative breast cancer, respectively. For smoothing and erosion, VOIs yielded the highest number of robust features and the best prediction performance, while ellipse fitting and dilation lead to the lowest robustness and prediction performance for both breast cancer subtypes. At most 28% of the selected features were similar to manual VOIs when different VOI delineation data were used. Differences in VOI delineation affect different steps of radiomics analysis, and their quantification is therefore important for development of standardized radiomics research.

9.
Eur Radiol Exp ; 7(1): 77, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38057616

ABSTRACT

PURPOSE: To determine if pelvic/ovarian and omental lesions of ovarian cancer can be reliably segmented on computed tomography (CT) using fully automated deep learning-based methods. METHODS: A deep learning model for the two most common disease sites of high-grade serous ovarian cancer lesions (pelvis/ovaries and omentum) was developed and compared against the well-established "no-new-Net" framework and unrevised trainee radiologist segmentations. A total of 451 CT scans collected from four different institutions were used for training (n = 276), evaluation (n = 104) and testing (n = 71) of the methods. The performance was evaluated using the Dice similarity coefficient (DSC) and compared using a Wilcoxon test. RESULTS: Our model outperformed no-new-Net for the pelvic/ovarian lesions in cross-validation, on the evaluation and test set by a significant margin (p values being 4 × 10-7, 3 × 10-4, 4 × 10-2, respectively), and for the omental lesions on the evaluation set (p = 1 × 10-3). Our model did not perform significantly differently in segmenting pelvic/ovarian lesions (p = 0.371) compared to a trainee radiologist. On an independent test set, the model achieved a DSC performance of 71 ± 20 (mean ± standard deviation) for pelvic/ovarian and 61 ± 24 for omental lesions. CONCLUSION: Automated ovarian cancer segmentation on CT scans using deep neural networks is feasible and achieves performance close to a trainee-level radiologist for pelvic/ovarian lesions. RELEVANCE STATEMENT: Automated segmentation of ovarian cancer may be used by clinicians for CT-based volumetric assessments and researchers for building complex analysis pipelines. KEY POINTS: • The first automated approach for pelvic/ovarian and omental ovarian cancer lesion segmentation on CT images has been presented. • Automated segmentation of ovarian cancer lesions can be comparable with manual segmentation of trainee radiologists. • Careful hyperparameter tuning can provide models significantly outperforming strong state-of-the-art baselines.


Subject(s)
Deep Learning , Ovarian Cysts , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed
10.
Nat Commun ; 14(1): 6756, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875466

ABSTRACT

High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Neoadjuvant Therapy/methods , Biomarkers, Tumor/genetics
11.
Eur Radiol Exp ; 7(1): 50, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37700218

ABSTRACT

High-grade serous ovarian cancer is the most lethal gynaecological malignancy. Detailed molecular studies have revealed marked intra-patient heterogeneity at the tumour microenvironment level, likely contributing to poor prognosis. Despite large quantities of clinical, molecular and imaging data on ovarian cancer being accumulated worldwide and the rise of high-throughput computing, data frequently remain siloed and are thus inaccessible for integrated analyses. Only a minority of studies on ovarian cancer have set out to harness artificial intelligence (AI) for the integration of multiomics data and for developing powerful algorithms that capture the characteristics of ovarian cancer at multiple scales and levels. Clinical data, serum markers, and imaging data were most frequently used, followed by genomics and transcriptomics. The current literature proves that integrative multiomics approaches outperform models based on single data types and indicates that imaging can be used for the longitudinal tracking of tumour heterogeneity in space and potentially over time. This review presents an overview of studies that integrated two or more data types to develop AI-based classifiers or prediction models.Relevance statement Integrative multiomics models for ovarian cancer outperform models using single data types for classification, prognostication, and predictive tasks.Key points• This review presents studies using multiomics and artificial intelligence in ovarian cancer.• Current literature proves that integrative multiomics outperform models using single data types.• Around 60% of studies used a combination of imaging with clinical data.• The combination of genomics and transcriptomics with imaging data was infrequently used.


Subject(s)
Artificial Intelligence , Ovarian Neoplasms , Humans , Female , Multiomics , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/genetics , Algorithms , Biomarkers , Tumor Microenvironment
12.
Diagnostics (Basel) ; 13(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37685352

ABSTRACT

Artificial intelligence (AI) methods applied to healthcare problems have shown enormous potential to alleviate the burden of health services worldwide and to improve the accuracy and reproducibility of predictions. In particular, developments in computer vision are creating a paradigm shift in the analysis of radiological images, where AI tools are already capable of automatically detecting and precisely delineating tumours. However, such tools are generally developed in technical departments that continue to be siloed from where the real benefit would be achieved with their usage. Significant effort still needs to be made to make these advancements available, first in academic clinical research and ultimately in the clinical setting. In this paper, we demonstrate a prototype pipeline based entirely on open-source software and free of cost to bridge this gap, simplifying the integration of tools and models developed within the AI community into the clinical research setting, ensuring an accessible platform with visualisation applications that allow end-users such as radiologists to view and interact with the outcome of these AI tools.

13.
Eur J Radiol ; 167: 111058, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666071

ABSTRACT

Tumour metabolism can be imaged with a novel imaging technique termed hyperpolarised carbon-13 (13C)-MRI using probes, i.e., endogenously found molecules that are labeled with 13C. Hyperpolarisation of the 13C label increases the sensitivity to a level that allows dynamic imaging of the distribution and metabolism of the probes. Dynamic imaging of [1-13C]pyruvate metabolism is of particular biological interest in cancer because of the Warburg effect resulting in the intratumoural accumulation of [1-13C]pyruvate and conversion to [1-13C]lactate. Numerous preclinical studies in breast cancer and other tumours have shown that hyperpolarised 13C-pyruvate has potential for metabolic phenotyping and response assessment at earlier timepoints than the current clinical imaging techniques allow. The clinical feasibility of hyperpolarised 13C-MRI after the injection of pyruvate in patients with breast cancer has now been demonstrated, with increased 13C-label exchange between pyruvate and lactate present in higher grade tumours with associated increased expression of the monocarboxylate transporter 1 (MCT1), the transmembrane transporter mediating intracellular pyruvate uptake, and lactate dehydrogenase (LDH) as the enzyme catalysing the conversion of pyruvate to lactate. Furthermore, a study in patients with breast cancer undergoing neoadjuvant chemotherapy suggested that early changes in 13C-label exchange can distinguish between patients who reach pathologic complete response (pCR) and those who do not. This review summarises the current literature on preclinical and clinical research on hyperpolarised 13C-MRI with [1-13C]-pyruvate in breast cancer imaging.


Subject(s)
Breast Neoplasms , Pyruvic Acid , Humans , Female , Breast Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Breast , Lactic Acid
14.
Diagnostics (Basel) ; 13(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37443703

ABSTRACT

One of the hallmarks of cancer is metabolic reprogramming, including high levels of aerobic glycolysis (the Warburg effect). Pyruvate is a product of glucose metabolism, and 13C-MR imaging of the metabolism of hyperpolarized (HP) [1-13C]pyruvate (HP 13C-MRI) has been shown to be a potentially versatile tool for the clinical evaluation of tumor metabolism. Hyperpolarization of the 13C nuclear spin can increase the sensitivity of detection by 4-5 orders of magnitude. Therefore, following intravenous injection, the location of hyperpolarized 13C-labeled pyruvate in the body and its subsequent metabolism can be tracked using 13C-MRI. Hyperpolarized [13C]urea and [1,4-13C2]fumarate are also likely to translate to the clinic in the near future as tools for imaging tissue perfusion and post-treatment tumor cell death, respectively. For clinical breast imaging, HP 13C-MRI can be combined with 1H-MRI to address the need for detailed anatomical imaging combined with improved functional tumor phenotyping and very early identification of patients not responding to standard and novel neoadjuvant treatments. If the technical complexity of the hyperpolarization process and the relatively high associated costs can be reduced, then hyperpolarized 13C-MRI has the potential to become more widely available for large-scale clinical trials.

15.
Comput Biol Med ; 163: 107096, 2023 09.
Article in English | MEDLINE | ID: mdl-37302375

ABSTRACT

Uncertainty quantification in automated image analysis is highly desired in many applications. Typically, machine learning models in classification or segmentation are only developed to provide binary answers; however, quantifying the uncertainty of the models can play a critical role for example in active learning or machine human interaction. Uncertainty quantification is especially difficult when using deep learning-based models, which are the state-of-the-art in many imaging applications. The current uncertainty quantification approaches do not scale well in high-dimensional real-world problems. Scalable solutions often rely on classical techniques, such as dropout, during inference or training ensembles of identical models with different random seeds to obtain a posterior distribution. In this paper, we present the following contributions. First, we show that the classical approaches fail to approximate the classification probability. Second, we propose a scalable and intuitive framework for uncertainty quantification in medical image segmentation that yields measurements that approximate the classification probability. Third, we suggest the usage of k-fold cross-validation to overcome the need for held out calibration data. Lastly, we motivate the adoption of our method in active learning, creating pseudo-labels to learn from unlabeled images and human-machine collaboration.


Subject(s)
Deep Learning , Humans , Uncertainty , Probability , Calibration , Image Processing, Computer-Assisted
16.
Eur Radiol ; 33(9): 6168-6178, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37166494

ABSTRACT

OBJECTIVES: To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole ([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor-positive (ER +) breast cancer. METHODS: Women aged > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent [18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microvessels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables. RESULTS: Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression (p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immunohistochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices. CONCLUSION: Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. KEY POINTS: • Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. • Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET. • Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Immunohistochemistry , Hypoxia , Magnetic Resonance Imaging , Positron-Emission Tomography , Hypoxia-Inducible Factor 1, alpha Subunit
17.
Radiol Artif Intell ; 5(2): e230017, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37035434
18.
Front Oncol ; 13: 1085874, 2023.
Article in English | MEDLINE | ID: mdl-36860310

ABSTRACT

Background: High-Grade Serous Ovarian Carcinoma (HGSOC) is the most prevalent and lethal subtype of ovarian cancer, but has a paucity of clinically-actionable biomarkers due to high degrees of multi-level heterogeneity. Radiogenomics markers have the potential to improve prediction of patient outcome and treatment response, but require accurate multimodal spatial registration between radiological imaging and histopathological tissue samples. Previously published co-registration work has not taken into account the anatomical, biological and clinical diversity of ovarian tumours. Methods: In this work, we developed a research pathway and an automated computational pipeline to produce lesion-specific three-dimensional (3D) printed moulds based on preoperative cross-sectional CT or MRI of pelvic lesions. Moulds were designed to allow tumour slicing in the anatomical axial plane to facilitate detailed spatial correlation of imaging and tissue-derived data. Code and design adaptations were made following each pilot case through an iterative refinement process. Results: Five patients with confirmed or suspected HGSOC who underwent debulking surgery between April and December 2021 were included in this prospective study. Tumour moulds were designed and 3D-printed for seven pelvic lesions, covering a range of tumour volumes (7 to 133 cm3) and compositions (cystic and solid proportions). The pilot cases informed innovations to improve specimen and subsequent slice orientation, through the use of 3D-printed tumour replicas and incorporation of a slice orientation slit in the mould design, respectively. The overall research pathway was compatible with implementation within the clinically determined timeframe and treatment pathway for each case, involving multidisciplinary clinical professionals from Radiology, Surgery, Oncology and Histopathology Departments. Conclusions: We developed and refined a computational pipeline that can model lesion-specific 3D-printed moulds from preoperative imaging for a variety of pelvic tumours. This framework can be used to guide comprehensive multi-sampling of tumour resection specimens.

19.
Cancers (Basel) ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497265

ABSTRACT

Breast cancer (BC) is the most common cancer among women worldwide. Neoadjuvant chemotherapy (NACT) indications have expanded from inoperable locally advanced to early-stage breast cancer. Achieving a pathological complete response (pCR) has been proven to be an excellent prognostic marker leading to better disease-free survival (DFS) and overall survival (OS). Although diagnostic accuracy of MRI has been shown repeatedly to be superior to conventional methods in assessing the extent of breast disease there are still controversies regarding the indication of MRI in this setting. We intended to review the complex literature concerning the tumor size in staging, response and surgical planning in patients with early breast cancer receiving NACT, in order to clarify the role of MRI. Morphological and functional MRI techniques are making headway in the assessment of the tumor size in the staging, residual tumor assessment and prediction of response. Radiomics and radiogenomics MRI applications in the setting of the prediction of response to NACT in breast cancer are continuously increasing. Tailored therapy strategies allow considerations of treatment de-escalation in excellent responders and avoiding or at least postponing breast surgery in selected patients.

20.
Cancers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010936

ABSTRACT

PURPOSE: To investigate whether a machine learning (ML)-based radiomics model applied to 18F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. METHODS: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous 18F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. RESULTS: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. CONCLUSION: A ML-based radiomics model applied to 18F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a "virtual biopsy" might be performed with radiomics signatures.

SELECTION OF CITATIONS
SEARCH DETAIL