Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Int J Biol Sci ; 20(2): 606-620, 2024.
Article in English | MEDLINE | ID: mdl-38169654

ABSTRACT

Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor ß-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.


Subject(s)
Liver Diseases, Alcoholic , Nitric Oxide , Animals , Humans , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Nitric Oxide/metabolism
2.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899888

ABSTRACT

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Subject(s)
Heart Failure , Receptors, Progesterone , Humans , Adenosine Triphosphate/therapeutic use , Fatty Acids/metabolism , Glucose/metabolism , Heart Failure/metabolism , Membrane Proteins , Myocytes, Cardiac/metabolism , Pyruvic Acid
3.
Gastric Cancer ; 26(1): 82-94, 2023 01.
Article in English | MEDLINE | ID: mdl-36125689

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS: GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS: Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION: Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Animals , Humans , Mice , Carcinogenesis/metabolism , Epithelial Cells/metabolism , Gastric Mucosa/pathology , Helicobacter Infections/complications , Helicobacter Infections/pathology , Helicobacter pylori/genetics , Interleukin-17/metabolism , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Receptors, Interleukin-17/metabolism
4.
Circ Res ; 132(1): 52-71, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36448450

ABSTRACT

BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.


Subject(s)
Atherosclerosis , Calcinosis , Plaque, Atherosclerotic , Vascular Calcification , Mice , Humans , Animals , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Atherosclerosis/metabolism , Plaque, Atherosclerotic/pathology , Calcinosis/metabolism , Bone Morphogenetic Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , RNA/metabolism , Vascular Calcification/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Thioredoxins/metabolism
5.
Int Urol Nephrol ; 55(1): 17-28, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36107291

ABSTRACT

PURPOSE: Benign prostatic hyperplasia (BPH) is a urogenital disorder that affects approximately 85% of males who are over 50 years of age. Hydrocotyle ramiflora (HR), belonging to Apiaceae family, is used to treat urinary system diseases such as urine retention in traditional Chinese herbal medicine. In this study, we evaluated the effects of HR in the BPH animal model. METHODS: We induced BPH in rats via subcutaneous (sc) injections of testosterone propionate (TP, 3 mg/kg). Rats were also administered HR (150 mg/kg), finasteride (10 mg/kg), or vehicle via oral gavage. After induction, prostate glands were collected, weighed, and processed for further analysis, including histopathological examination and immunohistochemistry. In addition, the mRNA expression of inflammatory cytokines in prostatic tissues was determined by quantitative real-time PCR (qRT-PCR). The protein expression of pro-apoptotic markers was examined using western blotting. RESULTS: HR treatment significantly reduced the prostate weight, epithelial thickness, and proliferating cell nuclear antigen (PCNA) expression, with the levels of cleaved caspase-3 and Bcl-2-associated X (Bax) protein considerably increased compared to BPH group. HR also decreased inflammatory cell infiltration and pro-inflammatory cytokine levels compared with BPH group. Furthermore, the expression of phosphor-nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were reduced by HR treatment. CONCLUSION: These results indicate that HR suppresses the development of BPH associated with anti-proliferative, pro-apoptotic, and anti-inflammatory effects, suggesting it is a potential alternative therapeutic agent for BPH.


Subject(s)
Centella , Prostatic Hyperplasia , Male , Humans , Rats , Animals , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Testosterone/therapeutic use , Rats, Sprague-Dawley , Plant Extracts/adverse effects
6.
Res Rep Urol ; 14: 313-326, 2022.
Article in English | MEDLINE | ID: mdl-36187165

ABSTRACT

Introduction: Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease of the prostate. Eriochloa villosa (EV) reportedly possesses various pharmacological activities, including anti-lipase activity and modulation of various antioxidative enzymes. In this study, we investigate the therapeutic potential of EV against BPH in a testosterone-induced BPH rat model. Methods: Rats were subjected to a daily subcutaneous injection of testosterone (3 mg kg-1) for 4 weeks to induce BPH. Along with testosterone, rats in the treatment group were administered finasteride (10 mg kg-1) or EV (150 mg kg-1) via oral gavage. Prostatic cancer (LNCaP) cell line was used to examine the effect of EV. Results: Finasteride and EV significantly decrease the relative prostate weight, serum levels of dihydrotestosterone and testosterone, and prostate epithelial thickness. Testosterone injection induced prostatic hyperplasia and proliferating cell nuclear antigen expression; however, EV treatment significantly attenuated these effects. Moreover, finasteride- and EV-treated rats exhibit an increase in the number of TUNEL-positive cells and reduced Bcl-2 expression in the prostate tissues compared with the testosterone-treated animals. Furthermore, EV suppresses inflammatory cytokines, including interleukin (IL)-6 and IL-8, in the prostate tissues. Meanwhile, the expression of inflammatory mediator cyclooxygenase-2 is consistently upregulated in testosterone-treated rats, whereas EV treatment significantly reverses this effect. Notably, EV treatment suppresses malondialdehyde (MDA) levels and upregulates testosterone-induced catalase (CAT) expression. In addition, EV suppresses expression of androgen receptor (AR) and prostate-specific antigen (PSA) induced by testosterone in LNCaP cells. Conclusion: The present study results suggest that EV regulates prostatic proliferation, apoptosis, response to inflammation, and oxidative stress in the BPH rat model, and may, therefore, serve as a useful therapeutic agent for BPH.

7.
Mol Ther Nucleic Acids ; 28: 353-362, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35505967

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a system is composed of a Cas12a effector that acts as a DNA-cleaving endonuclease and a crispr RNA (crRNA) that guides the effector to the target DNA. It is considered a key molecule for inducing target-specific gene editing in various living systems. Here, we improved the efficiency and specificity of the CRISPR-Cas12a system through protein and crRNA engineering. In particular, to optimize the CRISPR-Cas12a system at the molecular level, we used a chimeric DNA-RNA guide chemically similar to crRNA to maximize target sequence specificity. Compared with the wild-type (wt)-Cas12a system, when using enhanced Cas12a system (en-Cas12a), the efficiency and target specificity improved on average by 2.58 and 2.77 times, respectively. In our study, when the chimeric DNA-RNA-guided en-Cas12a effector was used, the gene-editing efficiency and accuracy were simultaneously increased. These findings could contribute to highly accurate genome editing, such as human gene therapy, in the near future.

8.
J Wildl Dis ; 58(2): 421-424, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35015076

ABSTRACT

Fatal systemic infection by Clostridium tarantellae in a wild Korean raccoon dog (Nyctereutes procyonoides koreensis) was diagnosed based on histopathology, immunofluorescence, PCR, and microbiome taxonomic profiling. Pathologic features were similar to Tyzzer's disease caused by C. piliforme. This is the first report of C. tarantellae infection in Korean raccoon dogs.


Subject(s)
Raccoon Dogs , Raccoons , Animals , Clostridium , Republic of Korea
9.
Exp Anim ; 71(1): 109-115, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34707028

ABSTRACT

We surveyed mouse microbiological contamination rates by testing rates for common contaminants using serological, culture, and parasitological methods. A total of 21,292 experimentally housed mice from 206 animal facilities, including hospitals, universities, companies, and research institutes, were tested over a 6-year period from 2014 to 2019. The most commonly found contaminants were various species of nonpathogenic protozoa (47.2%). The most common pathogenic bacteria were Staphylococcus aureus (21.2%), Pasteurella pneumotropica (12.5%), and Pseudomonas aeruginosa (5.8%). Mouse hepatitis virus (6.1%) was detected, but no other viral or bacterial pathogens were found. These results establish that the main pathogens that currently contaminate mouse facilities in Korea are opportunistic pathogens and that contamination with important pathogens, such as those in Categories B or C, has decreased.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Bacteria , Mice , Republic of Korea
10.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884616

ABSTRACT

Topoisomerase IIIß (Top3ß), the only dual-activity topoisomerase in mammals that can change topology of both DNA and RNA, is known to be associated with neurodevelopment and mental dysfunction in humans. However, there is no report showing clear associations of Top3ß with neuropsychiatric phenotypes in mice. Here, we investigated the effect of Top3ß on neuro-behavior using newly generated Top3ß deficient (Top3ß-/-) mice. We found that Top3ß-/- mice showed decreased anxiety and depression-like behaviors. The lack of Top3ß was also associated with changes in circadian rhythm. In addition, a clear expression of Top3ß was demonstrated in the central nervous system of mice. Positron emission tomography/computed tomography (PET/CT) analysis revealed significantly altered connectivity between many brain regions in Top3ß-/- mice, including the connectivity between the olfactory bulb and the cerebellum, the connectivity between the amygdala and the olfactory bulb, and the connectivity between the globus pallidus and the optic nerve. These connectivity alterations in brain regions are known to be linked to neurodevelopmental as well as psychiatric and behavioral disorders in humans. Therefore, we conclude that Top3ß is essential for normal brain function and behavior in mice and that Top3ß could be an interesting target to study neuropsychiatric disorders in humans.


Subject(s)
Anxiety Disorders/pathology , Behavior, Animal , Circadian Rhythm , Connectome , DNA Topoisomerases, Type I/physiology , Depression/pathology , Animals , Anxiety Disorders/etiology , Depression/etiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout
11.
Article in English | MEDLINE | ID: mdl-34630623

ABSTRACT

The flavonoid myricetin is abundant in vegetables and has various bioactive properties, including anti-inflammatory and antioxidative activities. In the present study, we explored the effects of myricetin on alcohol-induced gastric ulcer in a rat model. To induce gastric ulcer, absolute ethanol (5 mL/kg body weight) was orally administrated to each rat. The positive control and myricetin-treated groups were given oral doses of omeprazole (20 mg/kg) or myricetin (12 mg/kg), respectively, 1 hour prior to the administration of absolute alcohol. We found that pretreatment with myricetin significantly decreased alcohol-induced gastric ulcer, hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Myricetin pretreatment reduced the level of malondialdehyde (MDA) and increased that of total glutathione (GSSG/GSH) and superoxide dismutase (SOD) in gastric tissues. In addition, it elevated the expression levels of cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2) and decreased the phosphorylation of nuclear factor kappa B (NF-κB). Together, these results indicate that myricetin effectively inhibits ethanol-induced acute gastric injury by preventing oxidative damage, stimulating PGE2 production, and inhibiting NF-κB activation. We suggest that myricetin may be an alternative treatment for gastric injury caused by alcohol intake.

12.
Autophagy ; 17(9): 2549-2564, 2021 09.
Article in English | MEDLINE | ID: mdl-33190588

ABSTRACT

Impaired macroautophagy/autophagy has been implicated in experimental and human nonalcoholic steatohepatitis (NASH). However, the mechanism underlying autophagy dysregulation in NASH is largely unknown. Here, we investigated the role and mechanism of TXNIP/VDUP1 (thioredoxin interacting protein), a key mediator of cellular stress responses, in the pathogenesis of NASH. Hepatic TXNIP expression was upregulated in nonalcoholic fatty liver disease (NAFLD) patients and in methionine choline-deficient (MCD) diet-fed mice, as well as in palmitic acid (PA)-treated hepatocytes. Upregulation of hepatic TXNIP was positively correlated with impaired autophagy, as evidenced by a decreased number of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) puncta and increased SQSTM1/p62 (sequestosome 1) expression. Deletion of the Txnip gene enhanced hepatic steatosis, inflammation, and fibrosis, accompanied by impaired autophagy and fatty acid oxidation (FAO) in MCD diet-fed mice. Mechanistically, TXNIP directly interacted with and positively regulated p-PRKAA, leading to inactivation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) and nuclear translocation of TFEB (transcription factor EB), which in turn promoted autophagy. Inhibition of MTORC1 by rapamycin induced autophagy and increased the expression levels of FAO-related genes and concomitantly attenuated lipid accumulation in PA-treated txnip-knockout (KO) hepatocytes, which was further abolished by silencing of Atg7. Rapamycin treatment also attenuated MCD diet-induced steatosis, inflammation, and fibrosis with increased TFEB nuclear translocation and restored FAO in txnip-KO mice. Our findings suggest that elevated TXNIP ameliorates steatohepatitis by interacting with PRKAA and thereby inducing autophagy and FAO. Targeting TXNIP may be a potential therapeutic approach for NASH.Abbreviations: ACOX1: acyl-Coenzyme A oxidase 1, palmitoyl; ACSL1: acyl-CoA synthetase long-chain family member 1; ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; AMPK: AMP-activated protein kinase; ATG: autophagy-related; BafA1: bafilomycin A1; COL1A1/Col1α1: collagen, type I, alpha 1; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; DGAT1: diacylglycerol O-acyltransferase 1; DGAT2: diacylglycerol O-acyltransferase 2; ECI2/Peci: enoyl-Coenzyme A isomerase 2; EHHADH: enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase; FAO: fatty acid oxidation; FASN: fatty acid synthase; FFA: free fatty acids; GFP: green fluorescent protein; GK/GYK: glycerol kinase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPAM: glycerol-3-phosphate acyltransferase, mitochondrial; GPT/ALT: glutamic pyruvic transaminase, soluble; H&E: hematoxylin and eosin; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; IOD: integral optical density; KO: knockout; Leu: leupeptin; LPIN1: lipin 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MCD: methionine choline-deficient; MMP9: matrix metallopeptidase 9; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; NAFLD: nonalcoholic fatty liver diseases; NASH: nonalcoholic steatohepatitis; PA: palmitic acid; PPARA/PPARα: peroxisome proliferator activated receptor alpha; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; qRT-PCR: quantitative real-time PCR; RPS6KB1/p70S6K1: ribosomal protein S6 kinase, polypeptide 1; RPTOR: regulatory associated protein of MTOR complex 1; SCD1: stearoyl-Coenzyme A desaturase 1; SEM: standard error of the mean; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TGFB/TGF-ß: transforming growth factor, beta; TIMP1: tissue inhibitor of metalloproteinase 1; TNF/TNF-α: tumor necrosis factor; TXNIP/VDUP1: thioredoxin interacting protein; WT: wild-type.


Subject(s)
Autophagy , Carrier Proteins , Non-alcoholic Fatty Liver Disease , Thioredoxins , Animals , Autophagy/genetics , Carrier Proteins/genetics , Fatty Acids , Humans , Lipid Metabolism , Mice , Thioredoxins/genetics
13.
Int J Med Sci ; 17(6): 815-823, 2020.
Article in English | MEDLINE | ID: mdl-32218703

ABSTRACT

Importin-11 (Ipo11) is a novel member of the human importin family of transport receptors (karyopherins), which are known to mediate the nucleocytoplasmic transport of protein and RNA cargos. Despite its role in the transport of protein, we found that knockout of Ipo11 nuclear import factor affects normal embryonic development and govern embryo-lethal phenotypes in mice. In this study, we for the first time produced a mouse line containing null mutation in Ipo11 gene utilized by gene trapping. The Ipo11-/- embryos showed an embryonic lethal phenotype. The Ipo11-/- embryos showed a reduced size at embryonic day 10.5 (E10.5) when compared with Ipo11+/+ or Ipo11+/- embryos and died by E11.5. Whereas Ipo11+/- mice were healthy and fertile, and there was no detectable changes in embryonic lethality and phenotype when reviewed. In the X-gal staining with the Ipo11-/- or Ipo11+/- embryos, strong X-gal staining positivity was detected systematically in the whole mount embryos at E10.5, although almost no X-gal positivity was detected at E9.5, indicating that the embryos die soon after the process of Ipo11 expression started. These results indicate that Ipo11 is essential for the normal embryonic development in mice.


Subject(s)
Embryonic Development/genetics , Karyopherins/genetics , Animals , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental/genetics , Humans , Karyopherins/antagonists & inhibitors , Mice , Mice, Knockout , Pregnancy
14.
J Ethnopharmacol ; 255: 112779, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32209388

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Asteris Radix et Rhizoma (AR) refers to the roots and rhizomes of Aster tataricus L., which is widely distributed throughout East Asia. AR has been consumed as a traditional medicine in Korea, Japan and China for the treatment of urologic symptoms. To date, however, the therapeutic effect of AR on benign prostatic hyperplasia (BPH) has not been investigated. AIM OF THE STUDY: The present study evaluated the therapeutic effects of AR on a testosterone-induced BPH rats. MATERIALS AND METHODS: We induced BPH to rats by subcutaneous injections (s.c) of testosterone propionate (TP) daily for four weeks. Rats were also administered daily oral gavage of AR (150 mg/kg) or vehicle. After four weeks of induction, all animals were euthanized humanely and their prostate glands were removed, weighed and processed for further analysis, including histopathological examination, real-time PCR, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and Western blot analysis. RESULTS: Administration of AR to TP-induced BPH rats considerably reduced prostate weight and concentrations of serum testosterone and prostate dihydrotestosterone (DHT). Epithelial thickness and expression of proliferating cell nuclear antigen (PCNA) were markedly suppressed by AR-treatment in the rats. Furthermore, the expression of the B-cell lymphoma 2 (Bcl-2) were reduced and expression of the Bcl-2-associated X protein (Bax) increased, resulting in significant reduction in Bcl-2/Bax ratio. In addition, AR decreased the level of pro-inflammatory cytokines, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were reduced by AR treatment in a TP-induced BPH rat model. CONCLUSIONS: AR alleviates BPH by promoting apoptosis and suppressing inflammation, indicating that AR may be used clinically to treat BPH accompanied by inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Aster Plant , Plant Extracts/pharmacology , Plant Roots , Prostate/drug effects , Prostatic Hyperplasia/prevention & control , Rhizome , Testosterone Propionate , Animals , Anti-Inflammatory Agents/isolation & purification , Apoptosis Regulatory Proteins/metabolism , Aster Plant/chemistry , Cell Proliferation/drug effects , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Male , Organ Size , Plant Extracts/isolation & purification , Plant Roots/chemistry , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Rats, Sprague-Dawley , Rhizome/chemistry
15.
Int J Med Sci ; 16(12): 1557-1563, 2019.
Article in English | MEDLINE | ID: mdl-31839743

ABSTRACT

E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.


Subject(s)
Bone Development/genetics , E2F3 Transcription Factor/genetics , Embryonic Development/genetics , Muscle, Skeletal/growth & development , Animals , Apoptosis/genetics , Body Weight/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , Embryo, Mammalian , Humans , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Phenotype
16.
Biol Pharm Bull ; 42(1): 1-9, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30381617

ABSTRACT

Veratrum maackii (VM), a perennial plant in the Melanthiaceae family, has anti-hypertensive, anti-cholinergic, anti-asthmatic, anti-tussive, anti-fungal, anti-melanogenesis, and anti-tumor activities. Here, we investigated the therapeutic effect of VM on benign prostatic hyperplasia (BPH) in human normal prostate cell line (WPMY-1) and a testosterone propionate-induced BPH animal model. WPMY-1 cells were treated with VM (1-10 µg/mL) and testosterone propionate (100 nM). BPH in rats was generated via daily subcutaneous injections of testosterone propionate (3 mg/kg) dissolved in corn oil, for 4 weeks. VM (150 mg/kg) was administered daily for 4 weeks by oral gavage concurrently with the testosterone propionate. All rats were sacrificed and the prostates were dissected, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Immunoblotting experiments indicated that WPMY-1 cells treated testosterone propionate had increased expression of prostate specific antigen (PSA) and androgen receptor (AR), and treatment with VM or finasteride blocked this effect. In rat model, VM significantly reduced prostate weight, prostatic hyperplasia, prostatic levels of dihydrotestosterone (DHT), and expression of proliferation markers such as proliferating cell nuclear antigen (PCNA) and cyclin D1, but increased the expression of pro-apoptotic Bcl-2-associated X protein (Bax) and the cleavage of caspase-3. VM administration also suppressed the testosterone propionate-induced activation of nuclear factor-kappaB (NF-κB). Our results indicate that VM effectively represses the development of testosterone propionate-induced BPH, suggesting it may be a useful treatment agent for BPH.


Subject(s)
Plant Extracts/therapeutic use , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Testosterone Propionate/toxicity , Veratrum , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Male , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Prostatic Hyperplasia/pathology , Rats , Rats, Sprague-Dawley , Treatment Outcome
17.
Biomed Chromatogr ; 33(2): e4388, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30238481

ABSTRACT

In this study, we developed a method for the determination of Penicillium griseofulvum-oriented pyripyropene A (PPPA), a selective inhibitor of acyl-coenzyme A:cholesterol acyltransferase 2, in mouse and human plasma and validated it using liquid chromatography-tandem mass spectrometry. Pyripyropene A (PPPA) and an internal standard, carbamazepine, were separated using a Xterra MS C18 column with a mixture of acetonitrile and 0.1% formic acid as the mobile phase. The ion transitions monitored in positive-ion mode [M + H]+ of multiple-reaction monitoring (MRM) were m/z 148.0 from m/z 584.0 for PPPA and m/z 194.0 from m/z 237.0 for the internal standard. The detector response was specific and linear for PPPA at concentrations within the range from 1 to 5,000 ng/mL. The intra-/inter-day precision and accuracy of the method was acceptable by the criteria for assay validation. The matrix effects of PPPA ranged from 97.6 to 104.2% and from 93.3 to 105.3% in post-preparative mouse and human plasma samples, respectively. PPPA was also stable under various processing and/or handling conditions. Finally, PPPA concentrations in the mouse plasma samples could be measured after intravenous, intraperitoneal, or oral administration of PPPA, suggesting that the assay is useful for pharmacokinetic studies on mice and applicable to human studies.


Subject(s)
Chromatography, Liquid/methods , Penicillium/chemistry , Pyridines/blood , Pyridines/pharmacokinetics , Sesquiterpenes/blood , Sesquiterpenes/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Drug Stability , Linear Models , Male , Mice , Mice, Inbred ICR , Pyridines/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sesquiterpenes/chemistry , Sterol O-Acyltransferase/antagonists & inhibitors , Sterol O-Acyltransferase 2
18.
J Ethnopharmacol ; 233: 115-122, 2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30508623

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UMH), of the family Ulmaceae, is a deciduous tree, widely distributed throughout Korea. UMH has been used as a traditional oriental medicine in Korea for the treatment of urological disorders, including bladder outlet obstruction (BOO), lower urinary tract syndrome (LUTS), diuresis, and hematuria. To date, its possible protective effects against benign prostatic hyperplasia (BPH) have not been analyzed. AIM OF THE STUDY: This study investigated the effects of UMH on the development of BPH using a rat model of testosterone propionate (TP)-induced BPH. MATERIALS AND METHODS: BPH was induced by daily subcutaneous injections of testosterone propionate (TP) for four weeks. UMH was administrated daily by oral gavage at a dose of 150 mg/kg during the four weeks of TP injections. Animals were sacrificed, and their prostates were weighed and subjected to histopathological examination, TUNEL assay, and western blot analysis. RESULTS: Treatment of BPH-model rats with UMH significantly reduced prostate weight, serum testosterone concentration and dihydrotestosterone (DHT) concentration in prostate tissue. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) were significantly attenuated in UMH-treated rats. In addition, UMH administration markedly induced the activation of caspases-3, - 8, and - 9 in prostate tissues of BPH rats, accompanied by upregulation of expression of Fas, Fas-associated protein with death domain (FADD), and Fas ligand (FasL) and a reduction in the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein (Bax). CONCLUSIONS: UMH effectively inhibited the proliferation and promoted the apoptosis of prostate cells, suggesting it may be useful for the treatment of BPH.


Subject(s)
Plant Extracts/therapeutic use , Prostatic Hyperplasia/drug therapy , Ulmus , Animals , Apoptosis/drug effects , Dihydrotestosterone/metabolism , Male , Phytotherapy , Plant Extracts/pharmacology , Prostate/drug effects , Prostate/pathology , Prostate/physiology , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Rats, Sprague-Dawley , Testosterone/blood , Testosterone Propionate
19.
Exp Biol Med (Maywood) ; 243(5): 408-417, 2018 03.
Article in English | MEDLINE | ID: mdl-29409347

ABSTRACT

FRY like transcription coactivator ( Fryl) gene located on chromosome 5 is a paralog of FRY microtubule binding protein ( Fry) in vertebrates. It encodes a protein with unknown functions. Fryl gene is conserved in various species ranging from eukaryotes to human. Although there are several reports on functions of Fry gene, functions of Fryl gene remain unclear. A mouse line containing null mutation in Fryl gene by gene trapping was produced in this study for the first time. The survival and growth of Fryl-/- mice were observed. Fryl gene expression levels in mouse tissues were determined and histopathologic analyses were conducted. Most Fryl-/- mice died soon after birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. No abnormal histopathologic lesion was apparent in full-term embryo or adult tissues except the kidney. Abnormal lining cell layer detachments from walls of collecting and convoluted tubules in kidneys were apparent in Fryl-/- neonates and full-term embryos. Fryl gene was expressed in renal tubular tissues including the glomeruli and convoluted and collecting tubules. This indicates that defects in tubular systems are associated with Fryl functions and death of Fryl-/- neonates. Fryl protein is required for normal development and functional maintenance of kidney in mice. This is the first report of in vivo Fryl gene functions. Impact statement FRY like transcription coactivator ( Fryl) gene is conserved in various species ranging from eukaryotes to human. It expresses a protein with unknown function. We generated a Fryl gene mutant mouse line and found that most homozygous mice died soon after their birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. Full-term mutant embryos showed abnormal collecting and convoluted tubules in kidneys where Fryl gene was expressed. Collectively, these results indicate that Fryl protein is required for normal development and functional maintenance of kidney in mice. To the best of our knowledge, this is the first report on in vivo Fryl gene functions.


Subject(s)
Hydronephrosis/genetics , Intercellular Signaling Peptides and Proteins/genetics , Kidney Glomerulus/embryology , Kidney Tubules/embryology , Membrane Proteins/genetics , Animals , Cell Line , Female , Hydronephrosis/mortality , Intercellular Signaling Peptides and Proteins/deficiency , Kidney Glomerulus/pathology , Kidney Tubules/pathology , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Biol Pharm Bull ; 40(12): 2125-2133, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28943529

ABSTRACT

Quisqualis indica (QI) has been used for treating disorders such as stomach pain, constipation, and digestion problem. This study was aimed to evaluate the therapeutic efficacy of QI extract on treating benign prostatic hyperplasia (BPH) in LNCaP human prostate cancer cell line and a testosterone-induced BPH rat model. LNCaP cells were treated with QI plus testosterone propionate (TP), and androgen receptor (AR) and prostate specific antigen (PSA) expression levels were assessed by Western blotting. To induce BPH, the rats were subjected to a daily subcutaneous injection of TP (3 mg/kg) for 4 weeks. The rats in treatment group were orally gavaged with QI (150 mg/kg) together with the TP injection. In-vitro studies showed that TP-induced increases in AR and PSA expression in LNCaP cells were reduced by QI treatment. In BPH-model rats, the prostate weight, testosterone in serum, dihydrotestosterone (DHT) concentration and 5α-reductase type 2 mRNA expression in prostate tissue were significantly reduced following the treatment with QI. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 were significantly attenuated in QI-treated rats. In addition, QI induced apoptosis by up-regulating caspase-3 and -9 activity and decreasing the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio in prostate tissues of BPH rats. Further investigation showed that TP-induced activation of AKT and glycogen synthase kinase 3ß (GSK3ß) was reduced by QI administration. Therefore, our findings suggest that QI attenuates the BPH state in rats through anti-proliferative and pro-apoptotic activities and might be useful in the clinical treatment of BPH.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Combretaceae/chemistry , Plant Extracts/pharmacology , Prostate/drug effects , Prostatic Hyperplasia/drug therapy , Animals , Dihydrotestosterone/blood , Humans , Male , Plant Extracts/therapeutic use , Proliferating Cell Nuclear Antigen , Prostate/cytology , Prostate/pathology , Prostate-Specific Antigen/blood , Prostatic Hyperplasia/blood , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/pathology , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Seeds/chemistry , Testosterone/blood , Testosterone/metabolism , Testosterone Propionate/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...