Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39183468

ABSTRACT

STUDY DESIGN: Biomechanical Study. OBJECTIVE: This study aims to evaluate the biomechanical adjacent segment effects of multi-level posterior cervical fusion constructs that terminate at C7 compared to those that terminate at T1 in cadaveric specimens. BACKGROUND: The cervicothoracic junction poses unique challenges for spine surgeons. Deciding to terminate multi-level posterior cervical fusion constructs at C7 or extend them across the cervicothoracic junction remains a controversial issue. METHODS: Six cadaveric specimens underwent biomechanical testing in the intact state and after instrumentation with constructs from C3 and terminating at either C7 or T1. Range of motion (ROM) was assessed in flexion-extension, lateral bending, and axial rotation globally and at cranial and caudal adjacent segments. RESULTS: There was a significant decrease in overall flexion/extension by both C7 (-35.5°, P=0.002) and T1 (-39.8°, P=0.002) instrumentation compared to the intact spine. T1 instrumentation had significantly lower (-4.3°, P=0.008) flexion/extension ROM compared to C7 instrumentation. There were significant decreases in axial rotation by both C7 (-31.4°, P=0.009) and T1 (-36.8°, P=0.009) instrumentation compared to the intact spine, but no significant differences were observed between the two. There were also significant decreases in lateral bending by both C7 (-27.9°, P=0.022) and T1 (-33.7°, P=0.022) instrumentation compared to the intact spine, but no significant differences were observed between the two. No significant differences were observed in ROM at cranial or caudal adjacent segments between constructs terminating at C7 and those extending to T1. CONCLUSION: This biomechanical investigation demonstrates that constructs that cross the cervicothoracic junction experience less overall spinal motion in flexion-extension compared to those that terminate at C7. However, contrary to prior studies there is no difference in cranial and caudal adjacent segment motion. Surgeons should make clinical decisions regarding the caudal extent of fusion in multi-level posterior cervical fusions without major concerns about adjacent segment motion.

2.
J Arthroplasty ; 37(6S): S12-S18, 2022 06.
Article in English | MEDLINE | ID: mdl-35231563

ABSTRACT

BACKGROUND: Aseptic tibial loosening following primary total knee arthroplasty persists despite technique and device-related advancements. The mechanisms for this mode of failure are not well understood. We hypothesized that knee movement while the cement was curing dispersed lipids at the implant-cement interface and would result in decreased tibial fixation strength. METHODS: A cadaveric study was performed utilizing 32 torso-to-toe specimens (64 knees). Four contemporary total knee arthroplasty designs were evaluated. Each implant design was randomly assigned to a cadaveric specimen pair with side-to-side randomization. Specimen densitometry was recorded. Each tibial implant was cemented using a standard technique. On one side, the tibial component was held without motion following impaction until complete cement polymerization. The contralateral knee tibial implant was taken through gentle range of motion and stability assessment 7 minutes after cement mixing. Axial tibial pull-out strength and interface failure examination was performed on each specimen. RESULTS: The average pull-out strength for the no motion cohort (5,462 N) exceeded the motion cohort (4,473 N) (P = .001). The mean pull-out strength between implant designs in the no motion cohort varied significantly (implant A: 7,230 N, B: 5,806 N, C: 5,325 N, D 3,486 N; P = .007). Similarly, the motion cohort inter-implant variance was significant (P ≤ .001). Intra-implant pull-out strength was significantly higher in implant A than D. The average pull-out strength was significantly lower in specimens that failed at the implant-cement interface vs bone failures (4,089 ± 2,158 N vs 5,960 ± 2,010 N, P < .0025). CONCLUSION: Knee motion during cement polymerization is associated with significant decreases in tibial implant fixational strength. Reduction in implant pull-out strength was identified with each implant design with motion and varied between designs. Across all tested designs, we recommend limiting motion while cementing the tibial implant to improve fixation strength.


Subject(s)
Arthroplasty, Replacement, Knee , Awards and Prizes , Knee Prosthesis , Arthroplasty, Replacement, Knee/methods , Bone Cements , Cadaver , Humans , Prosthesis Failure , Tibia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL