Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Am J Transl Res ; 15(7): 4504-4520, 2023.
Article En | MEDLINE | ID: mdl-37560206

OBJECTIVES: Diabetic nephropathy (DN) is one of the most prevalent secondary complications associated with diabetes mellitus. Decades of research have implicated multiple pathways in the etiology and pathophysiology of diabetic nephropathy. There has been no reliable predictive biomarkers for the onset or progression of DN and no successful treatments are available. METHODS: In the present study, we explored the datasets of RNA sequencing data from patients with Type II diabetes mellitus (T2DM)-induced nephropathy to identify a novel gene signature. We explored the target bioactive compounds identified from Azanza garckeana, a medicinal plant commonly used by the traditional treatment of diabetes nephropathy. RESULTS: Our analysis identified lymphotoxin beta (LTB), SRY-box transcription factor 4 (SOX4), SOX9, and WAP four-disulfide core domain protein 2 (WFDC2) as novel signatures of T2DM-induced nephropathy. Additional analysis revealed the pathological involvement of the signature in cell-cell adhesion, immune, and inflammatory responses during diabetic nephropathy. Molecular docking and dynamic simulation at 100 ns conducted studies revealed that among the three compounds, Terpinen-4-ol exhibited higher binding efficacies (binding energies (ΔG) = -3.9~5.5 kcal/mol) against the targets. The targets, SOX4, and SOX9 demonstrated higher druggability towards the three compounds. WFDC2 was the least attractive target for the compounds. CONCLUSION: The present study was relevant in the diagnosis, prognosis, and treatment follow up of patients with diabetes induced nephropathy. The study provided an insight into the therapeutic application of the bioactive principles from Azanza garckeana. Continued follow-up invitro validations study are ongoing in our laboratory.

2.
Am J Cancer Res ; 13(6): 2598-2616, 2023.
Article En | MEDLINE | ID: mdl-37424807

Despite the therapeutic advancement with chemotherapy and targeted therapy against non-small-cell lung cancer (NSCLC), most patients ultimately develop resistance to these drugs, exhibiting disease progression, metastasis, and worse prognosis. There is, therefore, a need for the development of novel multi-targeted therapies that can offer a high therapeutic index with lesser chances of drug resistance against NSCLC. In the present study, we evaluated the therapeutic potential of a novel multi-target small molecule NLOC-015A for targeted treatment of NSCLC. Our in vitro studies revealed that NLOC-015A exhibited a broad spectrum of anticancer activities against lung cancer cell line. NLOC-015A decreased the viability of H1975 and H1299 cells with respective IC50 values of 2.07±0.19 and 1.90±0.23 µm. In addition, NLOC-015A attenuated the oncogenic properties (colony formation, migratory ability, and spheroid formation) with concomitant downregulation of expression levels of epidermal growth factor receptor (EGFR)/mammalian target of rapamycin (mTOR)/AKT, nuclear factor (NF)-κB, signaling network. In addition, the stemness inhibitory effect of NLOC0-15A was accompanied by decreased expression levels of aldehyde dehydrogenase (ALDH), MYC Proto-Oncogene (C-Myc), and (sex-determining region Y)-box 2 (SOX2) in both H1975 and H1299 cell lines. Furthermore, NLOC-015A suppressed the tumor burden and increased the body weight and survival of H1975 xenograft-bearing mice. Treatment with NLOC-015A also attenuated biochemical and hematological alterations in the tumor bearing mice. Interestingly, NLOC-015A synergistically enhanced the in vitro efficacy, and therapeutic outcome of osimertinib in vivo. In addition, the toxicity of osimertinib was significantly attenuated by combination with NLOC-015A. Altogether, our findings suggested that combining osimertinib with NLOC-015 appears to be a promising way to improve osimertinib's efficacy and achieve better therapeutic results against NSCLC. We therefore suggest that NLOC-015A might represent a new candidate for treating NSCLC via acting as a multitarget inhibitor of EGFR/mTOR/NF-Κb signaling networks and efficiently compromising the oncogenic phenotype of NSCLC.

3.
Biomed Pharmacother ; 163: 114800, 2023 Jul.
Article En | MEDLINE | ID: mdl-37141739

Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer characterized by drug resistance and distant metastasis. Cancer stem cells (CSCs) are considered a major contributor to TNBC's drug resistance. Thus targeting and eliminating CSCs have been vigorously researched. However, the precise targetable molecular networks responsible for CSC genesis remain unclear; this conundrum is mainly due to the high heterogeneity of the TNBC tumor microenvironment (TME). The cancer-associated fibroblasts (CAFs) are one of the most abundant cellular components of the TME. Emerging studies indicate that CAFs facilitate TNBC's progression by establishing a pro-tumor TME. Hence, identifying the molecular networks involved in CAF transformation and CAF-associated oncogenesis are essential areas to be explored. Through a bioinformatics approach, we identified INFG/STAT1/NOTCH3 as a molecular link between CSCs and CAF. DOX-resistant TNBC cell lines showed increased expression of INFG/STAT1/NOTCH3 and CD44 and were associated with increased self-renewal ability and CAF-transformative ability. Downregulation of STAT1 significantly reduced the tumorigenic properties of MDA-MB-231 and -468 cells and their CAF-transforming potential. Our molecular docking analysis suggested that gamma mangostin (gMG), a xanthone, formed complexes with INFG/STAT1/NOTCH3 better than celecoxib. We then demonstrated that gMG treatment reduced the tumorigenic properties similarly observed in STAT1-knocked down conditions. Finally, we utilized a DOX-resistant TNBC tumoroid-bearing mouse model to demonstrate that gMG treatment significantly delayed tumor growth, reduced CAF generation, and improved DOX sensitivity. Further investigations are warranted for clinical translation.


Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Molecular Docking Simulation , Doxorubicin/therapeutic use , Cell Line, Tumor , Tumor Microenvironment , STAT1 Transcription Factor/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
4.
Am J Cancer Res ; 13(3): 1004-1025, 2023.
Article En | MEDLINE | ID: mdl-37034220

Head and neck squamous carcinoma (HNSCC) affects more than half a million individuals and ranks the ninth leading cause of death globally each year. Many patients develop treatment resistance leading to poor clinical outcomes. The poor treatment responses are in part due to the heterogeneity of HNSCC tumor and tumor microenvironment (TME). The interaction of tumor cells with their TME has been studied vigorously in recent years because of their pivotal roles in tumorigenesis and determining the treatment response. Cancer-associated fibroblasts (CAFs) are one of the most abundant tumor-infiltrating cells, which have been shown to associate with the aggressive behavior of HNSCC. Hence, targeting and disrupting the tumor-CAFs interactions represents a rational therapeutic approach. To develop targeted therapeutic drugs against CAFs, the identification of CAF-associated gene signature is essential. Here, we analyzed multiple sequencing databases including microarrays and single-cell RNA-sequencing databases and identified SPARC/MMP9/CD44 as HNSCC targetable gene signatures encompassing cancer-associated fibroblasts (CAFs). We found SPARC/MMP9CD44 signature was highly expressed in HNSC tissues compared to adjacent normal tissues. Increased SPARC/MMP9/CD44 signature levels strongly correlated with tumor-infiltrating CAFs, suggesting the functional importance of this signature for HNSCC-CAFs interaction and progression. Subsequently, we utilized a genomics approach and identified midostaurin as the top-ranking drug candidate for targeting SPARC/MMP9/CD44 signature. For validation, we performed molecular docking of midostaurin in complex with SPARC/MMP9/CD44 and demonstrated midostaurin's high binding affinities compared to their respective standard inhibitors. In summary, our study provided a rapid genomics approach for identifying targetable gene signature and drug candidate for HNSCC.

5.
Am J Cancer Res ; 12(11): 5140-5159, 2022.
Article En | MEDLINE | ID: mdl-36504887

Acute myeloid leukemia (AML) is a type of leukemia with an aggressive phenotype, that commonly occurs in adults and with disappointing treatment outcomes. Genetic alterations were implicated in the etiology of cancers and form the basis for defining patient prognoses and guiding targeted therapies. In the present study, we leveraged bulk and single-cell RNA sequencing datasets from AML patients to determine the clinical significance of Fms-related receptor tyrosine kinase 3 (FLT3) alterations on the T-cell phenotype and immune response of AML patients. Subsequently, we evaluated the therapeutic potential of Lwk-n019, a novel small-molecule derivative of thiochromeno[2,3-c]quinolin-12-one. Our results suggested that FLT3 plays an important role in the progression, aggressive phenotype, and worse immune response of patients. An FLT3 mutation was associated with dysfunctional T-cell phenotypes, and high risk and shorter survival of AML patients. Our findings further suggested that the aggressiveness of AML and the prognostic role of FLT3 are associated with the co-occurrence of NPM1 and DNMT3A mutations. Lwk-n019 demonstrated dose-dependent anticancer activities against various leukemia cancer cell lines. Lwk-n019 demonstrated highly selective kinase inhibitory activities against the wild-type FLT3 (D835V) and mutant FLT3 (internal tandem duplication (ITD), D835V) with >95% and 99% inhibitory levels, respectively. Moreover, the compound demonstrated the best binding constant (Kd value) of 0.77 µM against FLT3 (ITD, 835V). In addition, Lwk-n019 significantly inhibited the activities of both the topoisomerase I (TOPI) and TOPII enzymes, with higher TOPI inhibitory activity than camptothecin, a clinical inhibitor. While the jejunum, duodenum, cecum, and colon were prime sites of absorption, Lwk-n019 achieved maximum concentration (Cmax), Vd, blood/plasma ratio, time to maximum concentration (Tmax), area under the receiver operating concentration curve (AUC)(0-24), and AUC(0-∞) values of 0.665 µg/mL, 5.21 Vc, L/kg, 1.5 h, 6634.7, and 6909.2, respectively. In conclusion, Lwk-n019 demonstrated anticancer activities via multi-target inhibition of TOPs and kinases with high inhibition preference for mutant ITD-FLT3. The present pioneer study provides a basis for advanced optimization of drug potency, selectivity, specificity, and other properties desired of anticancer drug leads. Studies are ongoing to determine the full therapeutic properties of Lwk-n019 and the detailed mechanisms of FLT3 in TOP inhibition.

6.
J Tradit Complement Med ; 12(4): 402-413, 2022 Jul.
Article En | MEDLINE | ID: mdl-35747354

Background and aims: Chronic stress is a major common cause of male infertility. Many species of velvet beans are shown to be rich in l-DOPA. In Thai folklore medicine, seeds of Mucuna pruriens (L.) DC. var. pruriens (Thai Mhamui or T-MP) have been used for treating erectile dysfunction. This study aimed to determine l-DOPA levels in T-MP seed extract and investigate its preventive on sexual behaviors and reproductive parameter damages including essential proteins in chronic unpredictable mild stress (CUMS) mice. Experimental procedure: Mice were divided into 4 groups: (I) control, (II) CUMS, (III) T-MP300 + CUMS, and (IV) T-MP600 + CUMS. Groups I and II received DW while groups III and IV were pretreated with the seed extracts (300 and 600 mg/kg BW) for 14 consecutive days before co-treatment with a randomly different CUMS/day (from 12 mild stressors) for 43 days. Results and conclusion: T-MP seed extract contained l-DOPA approximately 10% of total dried weight. A dose of 600 mg/kg improved sexual performances and degenerative seminiferous epithelium in CUMS mice. Sperm qualities and testosterone level were elevated while corticosterone was decreased in co-treatment groups. T-MP-CUMS cotreated groups also improved expressions of AKAP4, AR, and TyrPho proteins in testis, epididymis, and sperm. T-MP increased StAR and CYP11A1 expressions in testis. It also suppressed testicular apoptosis via decreased expressions of Hsp70, caspases 3, and 9. T-MP seeds containing l-DOPA could improve sexual behaviors and essential reproductive proteins caused by CUMS. Section: Natural Products. Taxonomy classification by evise: Traditional Herbal Medicine; Animal Model; Histopathology.

7.
J Ethnopharmacol ; 292: 115219, 2022 Jun 28.
Article En | MEDLINE | ID: mdl-35339625

ETHNOPHARMACOLOGICAL RELEVANCE: Thai Mucuna pruriens (L.) DC. var. pruriens (T-MP) has been traditionally used in treating depressive disorders, dysuria and enhancing male sexual desire. Although T-MP seed is demonstrated to have antioxidant capacity, its aphrodisiac and protective tissue damage properties have never been documented. Recently, ethanol (Eth) is known to cause sexual behavior dysfunction and damage reproductive system. This study aimed to investigate the protective effects of T-MP seed extract on sexual behavior dysfunction and reproductive damages in male rats admisted with Eth. MATERIALS AND METHODS: T-MP possessing antioxidant activity was determined for L-DOPA content using NMR analysis. Thirty-six male rats were divided into four groups (9 animals/group). Control rats received DW and the ethanol (Eth) group was given with Eth (3 g/kgBW; 40%v/v). In preventive groups (T-MP150 + Eth and MP300 + Eth groups), animals were treated with T-MP extract at a dose of 150 and 300 mg/kgBW before Eth administration for consecutive 56 days. Sexual behaviors including mounting frequency (MF), intromission frequency (IF), mounting latency (ML), intromission latency (IL), ejaculation latency (EL), post-ejaculatory interval (PEI), and ejaculation frequency (EF) were evaluated. Epididymal sperm quality and daily sperm production (DSP) were examined. Testicular histology was observed using Masson's trichrome staining. The malondialdehyde (MDA) levels and expressions of androgen receptor (AR), heat shock protein 70 (HSP70), steroidogenic acute regulatory (StAR), and tyrosine-phosphorylated (TyrPho) proteins in testis were also determined. RESULTS: T-MP extract contained L-DOPA and improved sexual behaviors including increased MF and IF and decreased ML and IL in Eth treated rats. Significantly, sperm quality, DSP, and testicular histopathology observed in Eth group were improved after T-MP treatment. T-MP also decreased the testicular MDA levels. Additionally, T-MP could correct testicular functional proteins of AR and StAR except HSP70 expression in Eth group. Expressions of TyrPho proteins in testicular and sperm lysates were improved in co-administered groups. CONCLUSIONS: T-MP seed extract possessing L-DOPA could enhance the sexual behaviors and protect reproductive damages via improvement of testicular functional proteins.


Mucuna , Animals , Antioxidants/pharmacology , Ethanol , Levodopa , Male , Mucuna/chemistry , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Seeds/chemistry , Thailand
8.
Phytomedicine ; 95: 153797, 2022 Jan.
Article En | MEDLINE | ID: mdl-34802869

BACKGROUND: Despite advances in chemotherapies and targeted drugs, colorectal cancer (CRC) remains challenging to treat due to drug resistance. Emerging evidence indicates that cancer-associated fibroblasts (CAFs) facilitate the generation of cancer stem-like cells (CSCs) and drug resistance. Glycogen synthase kinase-3 (GSK) associated signaling pathways have been implicated in the generation of CSCs and represent a target for therapeutics development. HYPOTHESIS: Gamma-mangostin (gMG) isolated from Garcinia mangostana was evaluated for its ability to downregulate GSK3ß-associated signaling in CRC cells and overcome CAF-induced 5-fluorouracil resistance and CSC generation. METHODS: Bioinformatics analysis, in silico molecular docking, in vitro assays, including cell viability tests, colony- and tumor sphere-formation assays, transwell migration assays, ELISA, SDS-PAGE, Western blotting, miR expression, qPCR, and flow cytometry, as well as in vivo mouse xenograft models were used to evaluate the antitumor effects of gMG. RESULTS: Bioinformatics analyses indicated that GSK3ß/CDK6/ß-catenin mRNA signature was significantly higher in colon cancer patients. Additional algorithms predicted a higher miR-26b level was associated with significantly higher survival in CRC patients and GSK3ß and CDK6 as targets of miR-26b-5p. To validate these findings in vitro, we showed that CAF-cocultured CRC cells expressed an increased expression of GSK3ß, ß-catenin, CDK6, and NF-κB. Therapeutically, we demonstrated that gMG treatment suppressed GSK3ß-associated signaling pathways while concomitantly increased the miR-26b-5p level. Using a xenograft mouse model of CAFs cocultured HCT116 tumorspheres, we showed that gMG treatment reduced tumor growth and overcame CAF-induced 5-fluorouracil resistance. CONCLUSIONS: Pharmacological intervention with gMG suppressed CRC carcinogenesis and stemness via downregulating GSK3/ß-catenin/CDK6 and upregulating the miR-26b-5p tumor suppressor. Thus, gMG represents a potential new CRC therapeutic agent and warrants further investigation.


Colorectal Neoplasms , Garcinia mangostana , MicroRNAs , Xanthones/pharmacology , Animals , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Colon/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cyclin-Dependent Kinase 6 , Garcinia mangostana/chemistry , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta , Humans , Mice , MicroRNAs/genetics , Molecular Docking Simulation , Wnt Signaling Pathway , beta Catenin/metabolism
10.
Acta Biomater ; 134: 686-701, 2021 10 15.
Article En | MEDLINE | ID: mdl-34358695

Thrombolysis is a standard treatment for rapidly restoring blood flow. However, the application of urokinase-type plasminogen activator (Uk) in clinical therapy is limited due to its nonspecific distribution and inadequate therapeutic accumulation. Precise thrombus imaging and site-specific drug delivery can enhance the diagnostic and therapeutic efficacy for thrombosis. Accordingly, we developed a P-selectin-specific, photothermal theranostic nanocomposite for thrombus-targeted codelivery of Uk and indocyanine green (ICG, a contrast agent for near-infrared (NIR) fluorescence imaging). We evaluated its capabilities for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. Mesoporous silica-coated gold nanorods (Si-AuNRs) were functionalized with an arginine-rich peptide to create an organic template for the adsorption of ICG and fucoidan (Fu), an algae-derived anticoagulant. Uk was loaded into the SiO2 pores of the Si-AuNRs through the formation of a Fu-Uk-ICG complex on the peptide-functionalized template. The Fu-Uk/ICG@SiAu NRs nanocomposite increased the photostability of ICG and improved its targeting/accumulation at blood clot sites with a strong NIR fluorescence intensity for precise thrombus imaging. Furthermore, ICG incorporated into the nanocomposite enhanced the photothermal effect of Si-AuNRs. Fu, as a P-selectin-targeting ligand, enabled the nanocomposite to target a thrombus site where platelets were activated. The nanocomposite enabled a faster release of Uk for rapid clearing of blood clots and a slower release of Fu for longer lasting prevention of thrombosis regeneration. The nanocomposite with multiple functions, including thrombus-targeting drug delivery, photothermal thrombolysis, and NIR fluorescence imaging, is thus an advanced theranostic platform for thrombolytic therapy with reduced hemorrhaging risk and enhanced imaging/thrombolysis efficiency. STATEMENT OF SIGNIFICANCE: Herein, for the first time, a P-selectin specific, photothermal theranostic nanocomposite for thrombus-targeted co-delivery of urokinase and NIR fluorescence contrast agent indocyanine green (ICG) was developed. We evaluated the potential of this theranostic nanocomposite for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. The nanocomposite showed multiple functions including thrombus targeting and imaging, and photothermal thrombolysis. Besides, it allowed faster release of the thrombolytic urokinase for rapidly clearing blood clots and slower release of a brown algae-derived anticoagulant fucoidan (also acting as a P-selectin ligand) for prevention of thrombosis regeneration. The nanocomposite is thus a new and advanced theranostic platform for targeted thrombolytic therapy.


Nanocomposites , Nanoparticles , Thrombosis , Anticoagulants/pharmacology , Cell Line, Tumor , Contrast Media , Fibrinolytic Agents/pharmacology , Humans , Indocyanine Green , Phototherapy , Precision Medicine , Silicon Dioxide , Theranostic Nanomedicine , Thrombosis/diagnostic imaging , Thrombosis/drug therapy
11.
Am J Cancer Res ; 11(6): 2590-2617, 2021.
Article En | MEDLINE | ID: mdl-34249417

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways are critical for normal human physiology, and any alteration in their regulation leads to several human cancers. These pathways are well interconnected and share a survival mechanism for escaping the depressant effect of antagonists. Therefore, novel small molecules capable of targeting both pathways with minimal or no toxicity are better alternatives to current drugs, which are disadvantaged by their accompanying resistance and toxicity. In this study, we demonstrate that the PI3K/AKT/mTOR/MEK is a crucial oncoimmune signature in multiple cancers. Moreover, we describe NSC777213, a novel isoflavone core and cobimetinib-inspired small molecule, which exhibit both antiproliferative activities against all panels of NCI60 human tumor cell lines (except COLO205 and HT29) and a selective cytotoxic preference for melanoma, non-small-cell lung cancer (NSCLC), brain, renal, and ovarian cancer cell lines. Notably, for NSC777213 treatment, chemoresistant ovarian cancer cell lines, including SK-OV-3, OVCAR-3, OVCAR-4, and NCI/ADR-RES, exhibited a higher antiproliferative sensitivity (total growth inhibition (TGI) = 7.62-31.50 µM) than did the parental cell lines OVCAR-8 and IGROV1 (TGI > 100 µM). NSC777213 had a mechanistic correlation with clinical inhibitors of PI3K/AKT/mTOR/MEK. NSC777213 demonstrates robust binding interactions and higher affinities for AKT and mTOR than did isoflavone, and also demonstrate a higher affinity for human MEK-1 kinase than some MEK inhibitors under clinical developments. In addition, treatment of U251 and U87MG cells with NSC777213 significantly downregulated the expression levels of the total and phosphorylated forms of PI3K/AKT/mTOR/MEK. Our study suggests that NSC777213 is a promising PI3K/AKT/mTOR/MEK inhibitor for further preclinical and clinical evaluation as a chemotherapeutic agent, particularly for the treatment of NSCLC, melanoma, and brain, renal, and ovarian cancers.

13.
Am J Cancer Res ; 10(8): 2337-2354, 2020.
Article En | MEDLINE | ID: mdl-32905416

Patients with advanced-stage colon cancer often exhibit resistance against treatment and distant metastasis, both key contributors to poor prognosis. Emerging evidence indicates that cancer stem cells (CSCs), characterized by the enhanced ability to self-renew, resist therapeutics, and promote metastasis, represents a clinical challenge to target. Alternative therapeutic approaches are urgently required. Here, we explored the feasibility of disrupting the intracellular communications between CSCs and the tumor microenvironment by way of exosomes. First, we demonstrated that exosomes secreted by colon tumorspheres (Exosp) promoted 5-FU resistance, migration, and tumorsphere formation. Exosp also increased the generation of cancer-associated fibroblasts and M2 polarized macrophages in vitro. Oncogenic molecules, including IL-6, p-STAT3, TGF-ß1, and ß-catenin, were identified as the cargoes of Exosp. Furthermore, the public database revealed the high abundance of miR-1246 in serum exosomes from colon cancer patients, and we verified in the Exosp from HCT116 and HT29 cells. Therapeutically, we demonstrated the ovatodiolide treatment reduced exosomal cargoes from tumorspheres (Exosp_OV). Exosp_OV were significantly less capable of promoting 5-FU resistance, migration, and tumorsphere formation when co-cultured with HCT116 and HT29 cells. Notably, Exosp_OV was less CAF- and M2 TAM-transformative. Computational docking analysis revealed that OV could bind and significantly reduced ß-catenin activity. Finally, mouse xenograft data indicated that ovatodiolide suppressed tumor growth via down-regulating IL-6, STAT3, ß-catenin expression, and serum exosomal miR-1246. In conclusion, our findings provided preclinical supports for ovatodiolide as a colon CSC inhibitor by reducing ß-catenin/STAT3/miR-1246 signaling conveyed by CSC derived exosomes.

14.
Cells ; 9(4)2020 04 08.
Article En | MEDLINE | ID: mdl-32276472

The role and therapeutic promise of poly-ADP ribose polymerase (PARP) inhibitors in anticancer chemotherapy are increasingly being explored, particularly in adjuvant or maintenance therapy, considering their low efficacy as monotherapy agents and their potentiating effects on concurrently administered contemporary chemotherapeutics. Against the background of increasing acquired resistance to FGFR1 inhibitors and our previous work, which partially demonstrated the caspase-3/PARP-mediated antitumor and antimetastatic efficacy of PD173074, a selective FGFR1 inhibitor, against ALDH-high/FGFR1-rich pancreatic ductal adenocarcinoma (PDAC) cells, we investigated the probable synthetic lethality and therapeutic efficacy of targeted PARP inhibition combined with FGFR1 blockade in patients with PDAC. Using bioinformatics-based analyses of gene expression profiles, co-occurrence and mutual exclusivity, molecular docking, immunofluorescence staining, clonogenicity, Western blotting, cell viability or cytotoxicity screening, and tumorsphere formation assays, we demonstrated that FGFR1 and PARP co-occur, form a complex, and reduce survival in patients with PDAC. Furthermore, FGFR1 and PARP expression was upregulated in FGFR1 inhibitor (dasatinib)-resistant PDAC cell lines SU8686, MiaPaCa2, and PANC-1 compared with that in sensitive cell lines Panc0403, Panc0504, Panc1005, and SUIT-2. Compared with the limited effect of single-agent olaparib (PARP inhibitor) or PD173074 on PANC-1 and SUIT-2 cells, low-dose combination (olaparib + PD173074) treatment significantly, dose-dependently, and synergistically reduced cell viability, upregulated cleaved PARP, pro-caspase (CASP)-9, cleaved-CASP9, and cleaved-CASP3 protein expression, and downregulated Bcl-xL protein expression. Furthermore, combination treatment markedly suppressed the clonogenicity and tumorsphere formation efficiency of PDAC cells regardless of FGFR1 inhibitor-resistance status and enhanced RAD51 and γ-H2AX immunoreactivity. In vivo studies have shown that both early and late initiation of combination therapy markedly suppressed tumor xenograft growth and increase in weight, although the effect was more pronounced in the early initiation group. In conclusion, FGFR1 inhibitor-resistant PDAC cells exhibited sensitivity to PD173074 after olaparib-mediated loss of PARP signaling. The present FGFR1/PARP-mediated synthetic lethality proof-of-concept study provided preclinical evidence of the feasibility and therapeutic efficacy of combinatorial FGFR1/PARP1 inhibition in human PDAC cell lines.


Pancreatic Neoplasms/therapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Humans , Mice , Pancreatic Neoplasms/pathology , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Pyrimidines/pharmacology
16.
Cancers (Basel) ; 11(10)2019 Sep 26.
Article En | MEDLINE | ID: mdl-31561595

The management of glioblastomas (GBMs) is challenged by the development of therapeutic resistance and early disease recurrence, despite multi-modal therapy. This may be attributed to the presence of glioma stem cells (GSCs) which are known to survive radio- and chemotherapy, by circumventing death signals and inducing cell re-population. Recent findings suggest GSCs may be enriched by certain treatment modality. These necessitate the development of novel therapeutics capable of targeting GBM cell plasticity and therapy-resistant GSCs. Here, aided by computer-assisted structure characterization and target identification, we predicted that a novel 5-(2',4'-difluorophenyl)-salicylanilide derivative, LCC-09, could target dopamine receptors and oncogenic markers implicated in GBMs. Bioinformatics data have indicated that dopamine receptor (DRD) 2, DRD4, CD133 and Nestin were elevated in GBM clinical samples and correlated to Temozolomide (TMZ) resistance and increased aldehyde dehydrogenase (ALDH) activity (3.5-8.9%) as well as enhanced (2.1-2.4-fold) neurosphere formation efficiency in U87MG and D54MG GBM cell lines. In addition, TMZ-resistant GSC phenotype was associated with up-regulated DRD4, Akt, mTOR, ß-catenin, CDK6, NF-κB and Erk1/2 expression. LCC-09 alone, or combined with TMZ, suppressed the tumorigenic and stemness traits of TMZ-resistant GBM cells while concomitantly down-regulating DRD4, Akt, mTOR, ß-catenin, Erk1/2, NF-κB, and CDK6 expression. Notably, LCC-09-mediated anti-GBM/GSC activities were associated with the re-expression of tumor suppressor miR-34a and reversal of TMZ-resistance, in vitro and in vivo. Collectively, these data lay the foundation for further exploration of the clinical feasibility of administering LCC-09 as single-agent or combinatorial therapy for patients with TMZ-resistant GBMs.

17.
Cancers (Basel) ; 11(7)2019 Jul 17.
Article En | MEDLINE | ID: mdl-31319622

Low response rate and recurrence are common issues in lung cancer; thus, identifying a potential compound for these patients is essential. Utilizing an in silico screening method, we identified withaferin A (WA), a cell-permeable steroidal lactone initially extracted from Withania somnifera, as a potential anti-lung cancer and anti-lung cancer stem-like cell (CSC) agent. First, we demonstrated that WA exhibited potent cytotoxicity in several lung cancer cells, as evidenced by low IC50 values. WA concurrently induced autophagy and apoptosis and the activation of reactive oxygen species (ROS), which plays an upstream role in mediating WA-elicited effects. The increase in p62 indicated that WA may modulate the autophagy flux followed by apoptosis. In vivo research also demonstrated the anti-tumor effect of WA treatment. We subsequently demonstrated that WA could inhibit the growth of lung CSCs, decrease side population cells, and inhibit lung cancer spheroid-forming capacity, at least through downregulation of mTOR/STAT3 signaling. Furthermore, the combination of WA and chemotherapeutic drugs, including cisplatin and pemetrexed, exerted synergistic effects on the inhibition of epidermal growth factor receptor (EGFR) wild-type lung cancer cell viability. In addition, WA can further enhance the cytotoxic effect of cisplatin in lung CSCs. Therefore, WA alone or in combination with standard chemotherapy is a potential treatment option for EGFR wild-type lung cancer and may decrease the occurrence of cisplatin resistance by inhibiting lung CSCs.

18.
J Clin Med ; 8(7)2019 Jul 21.
Article En | MEDLINE | ID: mdl-31330880

Metastasis remains the major cause of death from colon cancer. We intend to identify differentially expressed genes that are associated with the metastatic process and prognosis in colon cancer. ATP synthase epsilon subunit (ATP5E) gene was found to encode the mitochondrial F0F1 ATP synthase subunit epsilon that was overexpressed in tumor cells compared to their normal counterparts, while other genes encoding the ATP synthase subunit were repressed in public microarray datasets. CRC cells in which ATP5E was silenced showed markedly reduced invasive and migratory abilities. ATP5E inhibition significantly reduced the incidence of distant metastasis in a mouse xenograft model. Mechanistically, increased ATP5E expression resulted in a prominent reduction in E-cadherin and an increase in Snail expression. Our data also showed that an elevated ATP5E level in metastatic colon cancer samples was significantly associated with the AMPK-AKT-hypoxia-inducible factor-1α (HIF1α) signaling axis; silencing ATP5E led to the degradation of HIF1α under hypoxia through AMPK-AKT signaling. Our findings suggest that elevated ATP5E expression could serve as a marker of distant metastasis and a poor prognosis in colon cancer, and ATP5E functions via modulating AMPK-AKT-HIF1α signaling.

19.
Biomolecules ; 9(8)2019 07 25.
Article En | MEDLINE | ID: mdl-31349708

5-Fluorouracil (5-FU) regimen remains the backbone of the first-line agent to treat colon cancer, but often these patients develop resistance. Cancer stem cells (CSC's) are considered as one of the key contributors in the development of drug resistance and tumor recurrence. We aimed to provide preclinical evidence for Antrodiacinnamomea (AC), as a potential in suppressing colon cancer CSC's to overcome 5-FU drug-resistant. In-vitro assays including cell viability, colony formation, AC + 5-FU drug combination index and tumor sphere generation were applied to determine the inhibitory effect of AC. Mouse xenograft models also incorporated to evaluate in vivo effect of AC. AC treatment significantly inhibited the proliferation, colony formation and tumor sphere generation. AC also inhibited the expression of oncogenic markers (NF-κB, and C-myc), EMT/metastasis markers (vimentin and MMP3) and stemness associated markers (ß-catenin, SOX-2 and Nanog). Sequential treatment of AC and 5-FU synergized and reduces colon cancer viability both in vivo and in vitro. Mechanistically, AC mediated anti-tumor effect was associated with an increased level of tumor suppressor microRNAs especially, miR142-3p. AC can be a potent synergistic adjuvant, down-regulates cancer stemness genes and enhances the antitumor ability of 5-FU by stimulating apoptosis-associated genes, suppressing inflammation and metastasis genes through miR142-3p in colon cancer.


Antrodia/chemistry , Biological Products/administration & dosage , Colonic Neoplasms/drug therapy , Fluorouracil/administration & dosage , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , Animals , Biological Products/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Drug Synergism , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , Up-Regulation , Xenograft Model Antitumor Assays
20.
Asian J Surg ; 42(6): 657-666, 2019 Jun.
Article En | MEDLINE | ID: mdl-30609955

Controversy still surrounds clinical benefits of robotic-assisted (RS) over laparoscopic surgery (LS) despite its popularity in clinical use in terms of outcomes and complication rates. The study aims to systematically review and provide the evidence concerning the risk of conversion to open laparotomy and oncological outcomes of LS vs RS rectal cancer surgery. The Cochrane Library (including the Cochrane Central Register of Controlled Trials), EMBASE, PubMed, SCOPUS, and Web of Science were searched for randomized controlled trials (RCTs) comparing LS and RS. Eight RCTs including 1305 patients were identified. Pooled conversion rate was reported in 49 (11.89%) of 412 patients who underwent LS and in 23 (5.72%) of 402 patients who underwent RS (95% CI, 1.357 to 3.613; P = .001). However, shorter operative time was noted in LS group than RS group (95% CI, -43.106 to -3.876; P = .019). No significant difference in other outcomes was observed. Finally, in further analysis, the mean age in trial-level was found to be positively associated with operative time (point estimate = 2.598; 95% CI, 1.584 to 3.612; P < .001) and negatively with length of hospital stay. Robot-assisted surgery in rectal cancer showed lower conversion rate in comparison with that of laparoscopic surgery. Secondly, the laparoscopic surgery has shorter operative time compared with robot-assisted approach. The results also showed similar pathological outcomes between these two modalities. Future studies are needed to clarify the relationship between mean age and outcomes of surgery.


Laparoscopy/methods , Rectal Neoplasms/surgery , Rectum/surgery , Robotic Surgical Procedures/methods , Databases, Bibliographic , Humans , Length of Stay , Margins of Excision , Operative Time , Randomized Controlled Trials as Topic , Recovery of Function , Treatment Outcome
...