ABSTRACT
OBJECTIVE: Nontuberculous mycobacteria (NTM) species are increasingly being isolated and have become a key factor affecting public health by causing pulmonary diseases. Most NTM species do not respond to conventional tuberculosis (TB) drugs. This study aimed to identify NTM isolated from suspected pulmonary TB patients from the Zhejiang province and analyze their distribution in the region. METHODS: A total of 1,113 NTM isolates from patients suspected to be suffering from acid-fast bacilli-positive tuberculosis were identified at the species level, using the CapitalBio Mycobacterium identification array and polymerase chain reaction amplification and sequencing of 16S-23S gene internal transcribed spacer (ITS), 16S rRNA, and hsp65. RESULTS: Of the 23,138 isolates, we identified 1,102 NTM (4.8%), mainly including Mycobacterium intracellulare (54.81%, 604/1,102), M. chelonae-M. abscessus (16.52%, 182/1,102), M. avium (13.16%, 145/1,102), M. kansasii (8.17%, 90/1,102), and M. gordonae (3.27%, 36/1,102). CONCLUSION: The distribution of NTM species observed in patients with suspected pulmonary tuberculosis provides guidance for the diagnosis and treatment of NTM pulmonary diseases.
Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Tuberculosis, Pulmonary , China/epidemiology , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/epidemiology , Nontuberculous Mycobacteria/genetics , RNA, Ribosomal, 16S/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiologyABSTRACT
Abstract Objective Nontuberculous mycobacteria (NTM) species are increasingly being isolated and have become a key factor affecting public health by causing pulmonary diseases. Most NTM species do not respond to conventional tuberculosis (TB) drugs. This study aimed to identify NTM isolated from suspected pulmonary TB patients from the Zhejiang province and analyze their distribution in the region. Methods A total of 1,113 NTM isolates from patients suspected to be suffering from acid-fast bacilli-positive tuberculosis were identified at the species level, using the CapitalBio Mycobacterium identification array and polymerase chain reaction amplification and sequencing of 16S-23S gene internal transcribed spacer (ITS), 16S rRNA, and hsp65. Results Of the 23,138 isolates, we identified 1,102 NTM (4.8%), mainly including Mycobacterium intracellulare (54.81%, 604/1,102), M. chelonae-M. abscessus (16.52%, 182/1,102), M. avium (13.16%, 145/1,102), M. kansasii (8.17%, 90/1,102), and M. gordonae (3.27%, 36/1,102). Conclusion The distribution of NTM species observed in patients with suspected pulmonary tuberculosis provides guidance for the diagnosis and treatment of NTM pulmonary diseases.