Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134128, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555673

ABSTRACT

This study comprehensively deciphered the effect of silver nanoparticles (AgNPs) on anammox flocculent sludge, including nitrogen removal performance, microbial community structure, functional enzyme abundance, antibiotic resistance gene (ARGs) dissemination, and horizontal gene transfer (HGT) mechanisms. After long-term exposure to 0-2.5 mg/L AgNPs for 200 cycles, anammox performance significantly decreased (P < 0.05), while the relative abundances of dominant Ca. Kuenenia and anammox-related enzymes (hzsA, nirK) increased compared to the control (P < 0.05). For antibiotic resistome, ARG abundance hardly changed with 0-0.5 mg/L AgNPs but decreased by approximately 90% with 1.5-2.5 mg/L AgNPs. More importantly, AgNPs effectively inhibited MGE-mediated HGT of ARGs. Additionally, structural equation model (SEM) disclosed the underlying relationship between AgNPs, the antibiotic resistome, and the microbial community. Overall, AgNPs suppressed the anammox-driven nitrogen cycle, regulated the microbial community, and prevented the spread of ARGs in anammox flocs. This study provides a theoretical baseline for an advanced understanding of the ecological roles of nanoparticles and resistance elements in engineered ecosystems.


Subject(s)
Drug Resistance, Microbial , Metal Nanoparticles , Silver , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Drug Resistance, Microbial/genetics , Drug Resistance, Microbial/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gene Transfer, Horizontal , Sewage/microbiology , Nitrogen/chemistry , Nitrogen/metabolism , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Anaerobiosis , Microbiota/drug effects , Oxidation-Reduction
2.
Environ Sci Pollut Res Int ; 30(48): 106687-106697, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853646

ABSTRACT

The dewatering treatment is an essential process for the treatment and disposal of surplus activated sludge (SAS), and improving sludge dewatering performance is still a challenge and has become a research hotspot in recent years. The oxidation and disintegration of bacterial cells and extracellular polymeric substances (EPS) by active radicals produced by advanced oxidation processes (AOPs) were extremely promising to achieve deep sludge dewatering. This paper systematically studied the efficiency and mechanism of thermally activated persulfate (TAP) oxidation technology to the improvement of SAS dewatering performance. The results showed that the relative filterability (CST0/CST) was increased 2.52 times with 2.0 mmol/g VSS potassium peroxydisulfate (PDS) at 80 °C in 90 min. Under this condition, the Zeta potential of SAS significantly decreased from - 14.8 to - 1.44 mV, while the average particle size (dp50) decreased from 52.981 to 48.259 µm. Thermal treatment disrupted the sludge structure to release large amounts of EPS including polysaccharides and protein. Meanwhile, the results of three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectra showed that the TAP treatment could expedite the disintegration of sludge, facilitating the decrease of total EPS content and conversion of tightly bound EPS (TB-EPS) to loosely bound EPS (LB-EPS) and soluble EPS (S-EPS). The mechanism of TAP process to improve SAS dewatering performance was revealed, which could contribute to breaking the bottleneck of sludge depth dewatering and provide a theoretical and technical basis for its practical application.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Waste Disposal, Fluid/methods , Temperature , Water/chemistry , Oxidation-Reduction
3.
Bioresour Technol ; 371: 128595, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634879

ABSTRACT

This work comprehensively deciphered the effect of free nitrous acid (FNA) on the microbial community, inhibitory kinetics, and nitrifiers in nitritation process. Nitritation was first successfully achieved through selective inhibition of free ammonia (FA) on nitrite oxidizers (NOB). Then, batch tests clearly showed that FNA significantly inhibits the ammonia oxidation rate (rsu) and the growth rate (µ) of ammonia oxidizers (AOB), which was well described by the Hellinga model (KI = 0.222 mg·L-1). The structural equation model indicated that FNA was significantly and negatively associated with rsu, µ, Nitrosomonas, Commamons, Nitrospira, and Nitrotoga and positively correlated with Paracoccus. Furthermore, Nitrosomonas significantly drove the ammonia utilization and growth of AOB and was identified as the most important functional biomarker indicating the nitritation in response to FNA levels using random forest model. This study provides helpful information on the kinetics of the mechanism underlying the FNA inhibition on nitrification.


Subject(s)
Microbiota , Nitrous Acid , Ammonia , Oxidation-Reduction , Bioreactors , Nitrites , Nitrosomonas , Nitrification , Sewage
4.
Water Res ; 229: 119461, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36528928

ABSTRACT

Antibiotic resistance genes (ARGs) as emerging environmental contaminants pose severe global risks to public health and ecosystems. Municipal wastewater treatment plants (WWTPs) are crucial transmitters for the dissemination and propagation of ARGs into receiving water bodies via mobile genetic elements (MGEs). However, the comprehensive and deep deciphering of the diversity, abundance, and potential hosts of ARGs in two distinct altitudinal WWTPs is scarce. In this work, we revealed the elevational distribution characteristics of the resistance genes and microbial community of six WWTPs from two distinct geographical zones: a low-elevation (LE) region (Shandong, 10-22 m above sea level) and a high-elevation (HE) region (Gansu, 1,520-1,708 m above sea level). Significant elevational variations in the diversity and relative abundance of resistance genes were observed. Wastewater treatment could significantly reduce the concentrations of ARGs and MGEs by about 1-2 and 2-3 orders of magnitude, respectively. However, above 69.95% of resistance genes were enriched in effluent. In particular, 24 ARG subtype, 3 MGE subtypes, and 59 bacterial genera were persistent in all samples. More potential hosts for ARGs in LE region and more abundant human gut microbiota in HE region were identified. This work provides helpful information for controlling the spread of ARGs for their management and assessment, thereby mitigating the risks of ARGs in WWTPs.


Subject(s)
Anti-Bacterial Agents , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Wastewater , China
SELECTION OF CITATIONS
SEARCH DETAIL