Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 140: 112729, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098229

ABSTRACT

ADORA3 is mainly expressed in intestinal tract, and has the potential to promote the expression of mucin 2 (MUC2), the function-related factor of goblet cells, under asthma conditions. This study aims to confirm the induction and mechanisms of ADORA3 activation on goblet cells in ulcerative colitis (UC). A significant decrease in ADORA3 expression was found in mucosal biopsies from UC patients and in the colons of colitis mice. This reduction correlated negatively with disease severity and positively with goblet cell number. ADORA3 activation mitigated dextran sulfate sodium (DSS)-induced colitis and facilitated ATOH1-mediated goblet cell differentiation in both in vivo and in vitro. Metabolomics analysis unveiled that ADORA3 activation bolstered ketogenesis, leading to elevated levels of the metabolite BHB. Subsequently, BHB heightened the activity of HDAC1/2, augmenting histone acetylation at the H3K9ac site within the promoter region of the ATOH1 gene. Furthermore, the reason for ADORA3 activation to enhance ketogenesis was attributed to controlling the competitive binding among ß-arrestin2, SHP1 and PPARγ. This results in the non-ligand-dependent activation of PPARγ, thereby promoting the transcription of HMGCS2. The exact mechanisms by which ADORA3 promoted goblet cell differentiation and alleviated UC were elucidated using MRS1191 and shHMGCS2 plasmid. Collectively, ADORA3 activation promoted goblet cell differentiation and alleviated UC by enhancing ketogenesis via the "BHB-HDAC1/2-H3K9ac" pathway.

2.
Nature ; 629(8014): 1118-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38778102

ABSTRACT

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Subject(s)
Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
SELECTION OF CITATIONS
SEARCH DETAIL