Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Nat Prod Res ; : 1-8, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39282886

ABSTRACT

Penicillium species are renowned for their ability to produce a wide range of secondary metabolites with medicinal properties. In this study, compounds 1-10 were isolated from Penicillium sp. Z-16, of which compound 1 is a new benzophenone derivative named methyl 2-(2,6-dihydroxy-4-methylbenzoyl)-4,5-dihydroxy-3-methoxybenzoate. The chemical structure of 1 was determined through comprehensive spectroscopic analysis, including 1D, 2D NMR (HMBC, HSQC) and HRESIMS. In addition, six other known compounds (11-16) were isolated and identified from Penicillium sp. T-5-1. The antimicrobial activity tests demonstrated that compound 1 was moderately active against Candida albicans with a MIC value of 125 µg/mL, while compound 2 showed a MIC value of 62.5 µg/mL against Staphylococcus aureus.

2.
Molecules ; 29(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274913

ABSTRACT

The enmein-type diterpenoids are a class of anticancer ent-Kaurane diterpnoids that have received much attention in recent years. Herein, a novel 1,14-epoxy enmein-type diterpenoid 4, was reported in this project for the first time. A series of novel enmein-type diterpenoid derivatives were also synthesized and tested for anticancer activities. Among all the derivatives, compound 7h exhibited the most significant inhibitory effect against A549 cells (IC50 = 2.16 µM), being 11.03-folds better than its parental compound 4. Additionally, 7h exhibited relatively weak anti-proliferative activity (IC50 > 100 µM) against human normal L-02 cells, suggesting that it had excellent anti-proliferative selectivity for cancer cells. Mechanism studies suggested that 7h induced G0/G1 arrest and apoptosis in A549 cells by inhibiting the PI3K/AKT/mTOR pathway. This process was associated with elevated intracellular ROS levels and collapsed MMP. In summary, these data identified 7h as a promising lead compound that warrants further investigation of its anticancer properties.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Diterpenes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/chemical synthesis , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , A549 Cells , Drug Design , Cell Line, Tumor , Structure-Activity Relationship , Reactive Oxygen Species/metabolism
3.
Molecules ; 29(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39339370

ABSTRACT

In this study, novel ergosterol peroxide (EP) derivatives were synthesized and evaluated to assess their antiproliferative activity against four human cancer cell lines (A549, HepG2, MCF-7, and MDA-MB-231). Compound 3g exhibited the most potent antiproliferative activity, with an IC50 value of 3.20 µM against MDA-MB-231. This value was 5.4-fold higher than that of the parental EP. Bioassay optimization further identified 3g as a novel glutaminase 1 (GLS1) inhibitor (IC50 = 3.77 µM). In MDA-MB-231 cells, 3g reduced the cellular glutamate levels by blocking the glutamine hydrolysis pathway, which triggered reactive oxygen species production and induced caspase-dependent apoptosis. Molecular docking indicated that 3g interacts with the reaction site of the variable binding pocket by forming multiple interactions with GLS1. In a mouse model of breast cancer, 3g showed remarkable therapeutic effects at a dose of 50 mg/kg, with no apparent toxicity. Based on these results, 3g could be further evaluated as a novel GLS1 inhibitor for triple-negative breast cancer (TNBC) therapy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Ergosterol , Glutaminase , Molecular Docking Simulation , Triple Negative Breast Neoplasms , Humans , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Ergosterol/pharmacology , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Xenograft Model Antitumor Assays , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
4.
Sci Rep ; 14(1): 22385, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333290

ABSTRACT

Dysregulation of the gut microbiome has associated with the occurrence and progression of non-alcoholic fatty liver disease (NAFLD). To determine the diagnostic capacity of this association, we compared fecal microbiomes across 104 participants including non-NAFLD controls and NAFLD subtypes patients that were distinguished by magnetic resonance imaging. We measured their blood biochemical parameters, 16 S rRNA-based gut microbiota and fecal short-chain fatty acids (SCFAs). Multi-omic analyses revealed that NAFLD patients exhibited specific changes in gut microbiota and fecal SCFAs as compared to non-NAFLD subjects. Four bacterial genera (Faecalibacterium, Subdoligranulum, Haemophilus, and Roseburia) and two fecal SCFAs profiles (acetic acid, and butyric acid) were closely related to NAFLD phenotypes and could accurately distinguish NAFLD patients from healthy non-NAFLD subjects. Twelve genera belonging to Faecalibacterium, Subdoligranulum, Haemophilus, Intestinibacter, Agathobacter, Lachnospiraceae_UCG-004, Roseburia, Butyricicoccus, Actinomycetales_unclassified, [Eubacterium]_ventriosum_group, Rothia, and Rhodococcus were effective to distinguish NAFLD subtypes. Of them, combination of five genera can distinguish effectively mild NAFLD from non-NAFLD with an area under curve (AUC) of 0.84. Seven genera distinguish moderate NAFLD with an AUC of 0.83. Eight genera distinguish severe NAFLD with an AUC of 0.90. In our study, butyric acid distinguished mild-NAFLD from non-NAFLD with AUC value of 0.83. And acetic acid distinguished moderate-NAFLD and severe-NAFLD from non-NAFLD with AUC value of 0.84 and 0.70. In summary, our study and further analysis showed that gut microbiota and fecal SCFAs maybe a method with convenient detection advantages and invasive manner that are not only a good prediction model for early warning of NAFLD occurrence, but also have a strong ability to distinguish NAFLD subtypes.


Subject(s)
Fatty Acids, Volatile , Feces , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Humans , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Male , Female , Middle Aged , Feces/microbiology , Adult , Disease Progression , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics
5.
BMC Gastroenterol ; 24(1): 283, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174901

ABSTRACT

BACKGROUND: There is a contradiction in the use of microbiota-therapies, including probiotics, prebiotics, and synbiotics, to improve the condition of patients with nonalcoholic fatty liver disease (NAFLD). The aim of this review was to evaluate the effect of microbiota-therapy on liver injury, inflammation, and lipid levels in individuals with NAFLD. METHODS: Using Pubmed, Embase, Cochrane Library, and Web of Science databases were searched for articles on the use of prebiotic, probiotic, or synbiotic for the treatment of patients with NAFLD up to March 2024. RESULTS: Thirty-four studies involving 12,682 individuals were included. Meta-analysis indicated that probiotic, prebiotic, and synbiotic supplementation significantly improved liver injury (hepatic fibrosis, SMD = -0.31; 95% CI: -0.53, -0.09; aspartate aminotransferase, SMD = -0.35; 95% CI: -0.55, -0.15; alanine aminotransferase, SMD = -0.48; 95% CI: -0.71, -0.25; alkaline phosphatase, SMD = -0.81; 95% CI: -1.55, -0.08), lipid profiles (triglycerides, SMD = -0.22; 95% CI: -0.43, -0.02), and inflammatory factors (high-density lipoprotein, SMD = -0.47; 95% CI: -0.88, -0.06; tumour necrosis factor alpha, SMD = -0.86 95% CI: -1.56, -0.56). CONCLUSION: Overall, supplementation with probiotic, prebiotic, or synbiotic had a positive effect on reducing liver enzymes, lipid profiles, and inflammatory cytokines in patients with NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Prebiotics , Probiotics , Synbiotics , Humans , Alanine Transaminase/blood , Inflammation , Lipids/blood , Liver , Non-alcoholic Fatty Liver Disease/therapy , Probiotics/therapeutic use , Randomized Controlled Trials as Topic , Synbiotics/administration & dosage
6.
J Stomatol Oral Maxillofac Surg ; : 101983, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187039

ABSTRACT

PURPOSE: Oral mucositis is a frequent adverse reaction in cancer treatment. Probiotics exhibit anti-inflammatory and immunomodulatory properties that could prevent the occurrence of severe oral mucositis (SOM) induced by chemotherapy or radiation therapy in patients. This meta-analysis aimed to investigate the influence of probiotics on the incidence of SOM in cancer patients undergoing chemotherapy and/or radiotherapy. METHODS: We conducted a comprehensive search in PubMed, Embase, the Cochrane Library, and the China National Knowledge Infrastructure (CNKI) from their inception to September 2023. Dichotomous variables are analyzed with odds ratios (ORs) with 95% CIs, and statistical significance was set at a two-tailed P <0 .05. The primary outcome indicator was the effect of probiotics on SOM. Secondary outcome indicators included the effect of probiotics on oral mucositis and the ratio of diarrhoea. Statistical analysis was conducted using RevMan (5.4) and Stata 17.0 software. RESULTS: The study included a total of 12 articles and involved 1055 patients. All patients had undergone either radiotherapy or chemotherapy. Our findings revealed that the experimental group, which received probiotics for treatment, exhibited a lower ratio of SOM compared to the control group that received traditional placebo treatment (OR=0.37, 95%CI [0.28, 0.50], P<0.01). Subgroup analysis revealed variations in the ratio of SOM based on therapeutic regimen, tumor type, and region. The overall ratio of oral mucositis was significantly lower in the experimental group compared to the control group (OR=0.19, 95%CI [0.09-0.39], P<0.01). The ratio of diarrhea in the two patient groups showed no significant difference (OR=0.85, 95%CI [0.24, 3.01], P>0.05). CONCLUSION: The results of this meta-analysis suggest that probiotics could decrease the occurrence of SOM.

7.
Sci Adv ; 10(32): eado1739, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121223

ABSTRACT

During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ's strand displacement activity and Fen1's nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.


Subject(s)
DNA Polymerase III , DNA , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nucleosomes/metabolism , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , DNA/metabolism , DNA Replication , Protein Binding , DNA-Directed DNA Polymerase
8.
FASEB J ; 38(15): e23857, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39114953

ABSTRACT

Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.


Subject(s)
Atherosclerosis , CD47 Antigen , Efferocytosis , MicroRNAs , Animals , Humans , Mice , 3' Untranslated Regions , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Diet, High-Fat/adverse effects , Foam Cells/metabolism , Foam Cells/pathology , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism
9.
Animals (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998024

ABSTRACT

This study aimed to investigate the effects of bile acids (BAs) supplementation on fatty liver hemorrhagic syndrome (FLHS), production performance, and physiological and quality characteristics of laying hen eggs. Sixty Sanhuang laying hens, aged 28 weeks, were randomly allocated to six dietary treatments over a 4-week period, including the control (CON) group (feeding basal diet), the high-fat diet (HFD)-treated group (basal diet containing 10% soybean oil), and HFD supplemented with 0.01% and 0.02% of chenodeoxycholic acid (CDCA) or hyodeoxycholic acid (HDCA) groups. Production performance, egg quality, liver morphology, serum biochemical indexes, antioxidant capacity, proinflammatory cytokines, and intestinal microbiota were evaluated. The average body weight in 0.01% CDCA was larger than in the HFD group (p < 0.05). Eggshell Thickness in the CON group was greater than in the HFD, 0.01% CDCA, and HDCA groups (p < 0.05). Albumen height in the 0.02% HDCA group was higher than the HFD group (p < 0.05). Eggshell weight in the HFD group was less than the CON group (p < 0.05). Haugh unit (HU) in the HDCA group was larger than the HFD group (p < 0.05). Albumen weight in the 0.02% HDCA group was greater than the CON and HFD groups (p < 0.05). In the HFD group, the levels of triglyceride (TG), total cholesterol (TC), and low-density lipo-protein cholesterol (LDL-C) were surpassing the other groups (p < 0.05). The levels of catalase (CAT) and total superoxide dismutase (T-SOD) in the HFD group was smaller than the other groups (p < 0.05). The level of malondialdehyde (MDA) in the HFD group was higher than in the other groups (p < 0.05). Tumor necrosis factor-α (TNF-α) levels were larger in the HFD group than in the other groups (p < 0.05). The 16S rRNA sequencing analysis indicated significant variations in the relative abundance of specific bacterial populations among the different treatment groups. The treatment and CON groups exhibited a higher presence of bacteria that inhibit host energy absorption or promote intestinal health such as Firmicutes, Bacteroidetes, and Ruminococcus, whereas the HFD group showed an increased prevalence of potentially pathogenic or deleterious bacteria, such as Desulfovibrio spp. In conclusion, the supplementation of BAs in poultry feed has been demonstrated to effectively mitigate the detrimental effects of FLHS in laying hens. This intervention regulates lipid metabolism, bolsters antioxidant defenses, reduces inflammation, and modulates the gut microbiota, offering a novel perspective on the application of BAs in the poultry industry.

10.
BMC Med Imaging ; 24(1): 162, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956470

ABSTRACT

BACKGROUND: The image quality of computed tomography angiography (CTA) images following endovascular aneurysm repair (EVAR) is not satisfactory, since artifacts resulting from metallic implants obstruct the clear depiction of stent and isolation lumens, and also adjacent soft tissues. However, current techniques to reduce these artifacts still need further advancements due to higher radiation doses, longer processing times and so on. Thus, the aim of this study is to assess the impact of utilizing Single-Energy Metal Artifact Reduction (SEMAR) alongside a novel deep learning image reconstruction technique, known as the Advanced Intelligent Clear-IQ Engine (AiCE), on image quality of CTA follow-ups conducted after EVAR. MATERIALS: This retrospective study included 47 patients (mean age ± standard deviation: 68.6 ± 7.8 years; 37 males) who underwent CTA examinations following EVAR. Images were reconstructed using four different methods: hybrid iterative reconstruction (HIR), AiCE, the combination of HIR and SEMAR (HIR + SEMAR), and the combination of AiCE and SEMAR (AiCE + SEMAR). Two radiologists, blinded to the reconstruction techniques, independently evaluated the images. Quantitative assessments included measurements of image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the longest length of artifacts (AL), and artifact index (AI). These parameters were subsequently compared across different reconstruction methods. RESULTS: The subjective results indicated that AiCE + SEMAR performed the best in terms of image quality. The mean image noise intensity was significantly lower in the AiCE + SEMAR group (25.35 ± 6.51 HU) than in the HIR (47.77 ± 8.76 HU), AiCE (42.93 ± 10.61 HU), and HIR + SEMAR (30.34 ± 4.87 HU) groups (p < 0.001). Additionally, AiCE + SEMAR exhibited the highest SNRs and CNRs, as well as the lowest AIs and ALs. Importantly, endoleaks and thrombi were most clearly visualized using AiCE + SEMAR. CONCLUSIONS: In comparison to other reconstruction methods, the combination of AiCE + SEMAR demonstrates superior image quality, thereby enhancing the detection capabilities and diagnostic confidence of potential complications such as early minor endleaks and thrombi following EVAR. This improvement in image quality could lead to more accurate diagnoses and better patient outcomes.


Subject(s)
Artifacts , Computed Tomography Angiography , Endovascular Procedures , Humans , Retrospective Studies , Female , Computed Tomography Angiography/methods , Aged , Male , Endovascular Procedures/methods , Middle Aged , Aortic Aneurysm, Abdominal/surgery , Aortic Aneurysm, Abdominal/diagnostic imaging , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Stents , Endovascular Aneurysm Repair
11.
Food Res Int ; 188: 114501, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823874

ABSTRACT

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Subject(s)
Biogenic Amines , Fermentation , Glycine , Glycine/metabolism , Biogenic Amines/metabolism , Salts , Putrescine/metabolism , Tyramine/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/genetics , Fermented Foods/microbiology , Pichia/metabolism , Pichia/genetics
12.
Article in English | MEDLINE | ID: mdl-38809741

ABSTRACT

This study proposes a neural-network (NN)-based adaptive fixed-time control method for a two-degree-of-freedom (2-DOF) nonlinear helicopter system with input quantization and output constraints. First, a hysteresis quantizer is employed to mitigate chattering during signal quantization, and adaptive variables are utilized to eliminate errors in the quantization process. Subsequently, the system uncertainties are approximated using a radial basis function NN. Simultaneously, a logarithmic barrier Lyapunov function (BLF) is constructed to prevent the system outputs from violating the constraint boundaries. Based on a rigorous Lyapunov stability analysis and the fixed-time stability criterion, the signals of the closed-loop system are proven to be bounded within a fixed time. Finally, numerical simulations and experiments verified the feasibility of the proposed method.

13.
Sci Rep ; 14(1): 12270, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806611

ABSTRACT

The prognosis for patients with colorectal cancer (CRC) remains worse than expected due to metastasis, recurrence, and resistance to chemotherapy. Colorectal cancer stem cells (CRCSCs) play a vital role in tumor metastasis, recurrence, and chemotherapy resistance. However, there are currently no prognostic markers based on CRCSCs-related genes available for clinical use. In this study, single-cell transcriptome sequencing was employed to distinguish cancer stem cells (CSCs) in the CRC microenvironment and analyze their properties at the single-cell level. Subsequently, data from TCGA and GEO databases were utilized to develop a prognostic risk model for CRCSCs-related genes and validate its diagnostic performance. Additionally, functional enrichment, immune response, and chemotherapeutic drug sensitivity of the relevant genes in the risk model were investigated. Lastly, the key gene RPS17 in the risk model was identified as a potential prognostic marker and therapeutic target for further comprehensive studies. Our findings provide new insights into the prognostic treatment of CRC and offer novel perspectives for a systematic and comprehensive understanding of CRC development.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Neoplastic Stem Cells , RNA-Seq , Single-Cell Analysis , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Single-Cell Analysis/methods , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Transcriptome , Gene Expression Profiling , Sequence Analysis, RNA/methods
14.
Org Lett ; 26(15): 3208-3212, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38597783

ABSTRACT

Herein, we report a catalyst-free reaction of cyclobutanone oximes with chlorophosphines (R2PCl), which forms a fragile C═N-O-PR2 species that undergoes N-O homolysis, fragmentation, and radical-radical coupling, leading to the formation of cyano-containing phosphine oxides in good yields. The reaction features an in situ activation of cyclobutanone oximes for radical generation, in which R2PCl plays a dual role as both an activator and a reactant.

15.
Water Res ; 256: 121588, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636120

ABSTRACT

So far, little has been known about how the combined collection systems of sewage and rainfall runoff (CCSs) affect emerging contaminants in river water. To fill up the knowledge gap, this study was conducted to investigate the spatial distributions of three natural estrogens (NEs, i.e., estrone (E1), 17ß-estradiol (E2) and estriol (E3)) and their conjugates (C-NEs) in the Pearl River in the wet and dry seasons. Results showed that the respective average concentrations of NEs and C-NEs at different locations alongside the Pearl River in the wet season were 7.3 and 1.8 times those in the dry season. Based on estrogen equivalence (EEQ), the average estimated EEQ level in the Pearl River waters in the wet season was nearly 10 times that in the dry season. These seemed to imply that the CCSs in the wet season not only cause untreated sewage into the receiving water body, but greatly decrease the removal efficiency of NEs and C-NEs in wastewater treatment plant. Furthermore, the estimated annual loads of E1, E2, and E3 to the Pearl River in the wet season accounted for about 88.6 %, 100 %, and 99.3 % of the total annual loads. Consequently, this work for the first time demonstrated that the CCSs in cities with high precipitation are unfavorable for controlling of emerging contaminants.


Subject(s)
Environmental Monitoring , Estrogens , Rain , Rivers , Sewage , Water Pollutants, Chemical , Rivers/chemistry , China , Estrogens/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Seasons , Estrone/analysis , Estradiol/analysis
16.
Clin Nutr ; 43(6): 1224-1239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643738

ABSTRACT

BACKGROUND: Probiotic administration is a promising therapy for improving conditions in NAFLD patients. This network meta-analysis aimed to compare and estimate the relative effects of probiotic interventions and identify the optimal probiotic species for the treatment of NAFLD (Nonalcoholic fatty liver disease) patients. METHODS: The PubMed, Web of Science, Embase, and Cochrane databases were searched from inception to 29 January 2024 to identify RCTs that were published in English. The GRADE framework was used to assess the quality of evidence contributing to each network estimate. RESULTS: A total of 35 RCTs involving 2212 NAFLD patients were included in the analysis. For primary outcomes, Lactobacillus + Bifidobacterium + Streptococcus exhibited the highest probability of being the finest probiotic combination in terms of enhancing acceptability as well as reducing AST (SMD: -1.95 95% CI: -2.90, -0.99), ALT (SMD = -1.67, 95% CI: -2.48, -0.85), and GGT levels (SMD = -2.17, 95% CI: -3.27, -1.06). In terms of the secondary outcomes, Lactobacillus + Bifidobacterium + Streptococcus was also the best probiotic combination for reducing BMI (SMD = -0.45, 95% CI: -0.86, -0.04), LDL levels (SMD = -0.45, 95% CI: -0.87, -0.02), TC levels (SMD = -1.09, 95% CI: -1.89, -0.29), and TNF-α levels (SMD = -1.73, 95% CI: -2.72, -0.74). CONCLUSION: This network meta-analysis revealed that Lactobacillus + Bifidobacterium + Streptococcus may be the most effective probiotic combination for the treatment of liver enzymes, lipid profiles, and inflammation factors. These findings can be used to guide the development of a probiotics-based treatment guideline for NAFLD since there are few direct comparisons between different therapies.


Subject(s)
Lactobacillus , Network Meta-Analysis , Non-alcoholic Fatty Liver Disease , Probiotics , Probiotics/administration & dosage , Probiotics/therapeutic use , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Bifidobacterium , Streptococcus , Treatment Outcome
17.
Braz J Med Biol Res ; 57: e12951, 2024.
Article in English | MEDLINE | ID: mdl-38511766

ABSTRACT

The incidences of periodontitis and osteoporosis are rising worldwide. Observational studies have shown that periodontitis is associated with increased risk of osteoporosis. We performed a Mendelian randomization (MR) study to genetically investigate the causality of periodontitis on osteoporosis. We explored the causal effect of periodontitis on osteoporosis by MR analysis. A total of 9 single nucleotide polymorphisms (SNP) were related to periodontitis. The primary approach in this MR analysis was the inverse variance-weighted (IVW) method. Simple median, weighted median, and penalized weighted median were used to analyze sensitivity. The fixed-effect IVW model and random-effect IVW model showed no significant causal effect of genetically predicted periodontitis on the risk of osteoporosis (OR=1.032; 95%CI: 0.923-1.153; P=0.574; OR=1.032; 95%CI: 0.920-1.158; P=0.588, respectively). Similar results were observed in simple mode (OR=1.031; 95%CI: 0.780-1.361, P=0.835), weighted mode (OR=1.120; 95%CI: 0.944-1.328, P=0.229), simple median (OR=1.003; 95%CI: 0.839-1.197, P=0.977), weighted median (OR=1.078; 95%CI: 0.921-1.262, P=0.346), penalized weight median (OR 1.078; 95%CI: 0.919-1.264, P=0.351), and MR-Egger method (OR=1.360; 95%CI: 0.998-1.853, P=0.092). There was no heterogeneity in the IVW and MR-Egger analyses (Q=7.454, P=0.489 and Q=3.901, P=0.791, respectively). MR-Egger regression revealed no evidence of a pleiotropic influence through genetic variants (intercept: -0.004; P=0.101). The leave-one-out sensitivity analysis indicated no driven influence of any individual SNP on the association between periodontitis and osteoporosis. The Mendelian randomization analysis did not show a significant detrimental effect of periodontitis on the risk of osteoporosis.


Subject(s)
Osteoporosis , Periodontitis , Humans , Mendelian Randomization Analysis , Osteoporosis/genetics , Nonoxynol , Periodontitis/genetics , Polymorphism, Single Nucleotide/genetics
18.
Sci Total Environ ; 926: 172071, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554960

ABSTRACT

Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/ß-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of ß-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on ß-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/ß-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.


Subject(s)
Water Pollutants, Chemical , Water Purification , Sewage , Water Pollutants, Chemical/analysis , Estrogens , Arylsulfatases , Glucuronidase
19.
Cancer Cell ; 42(3): 325-327, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38402608

ABSTRACT

Dozens of compounds that rescue tumor-associated mutant p53 have been reported. Xiao et al. perform 10 assays to evaluate effectiveness of the mutant p53-rescue compounds side-by-side but do not detect reliable rescue in any assay for the evaluated compounds, except for ATO and its analog PAT.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Mutation
20.
Braz. j. med. biol. res ; 57: e12951, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550148

ABSTRACT

Abstract The incidences of periodontitis and osteoporosis are rising worldwide. Observational studies have shown that periodontitis is associated with increased risk of osteoporosis. We performed a Mendelian randomization (MR) study to genetically investigate the causality of periodontitis on osteoporosis. We explored the causal effect of periodontitis on osteoporosis by MR analysis. A total of 9 single nucleotide polymorphisms (SNP) were related to periodontitis. The primary approach in this MR analysis was the inverse variance-weighted (IVW) method. Simple median, weighted median, and penalized weighted median were used to analyze sensitivity. The fixed-effect IVW model and random-effect IVW model showed no significant causal effect of genetically predicted periodontitis on the risk of osteoporosis (OR=1.032; 95%CI: 0.923-1.153; P=0.574; OR=1.032; 95%CI: 0.920-1.158; P=0.588, respectively). Similar results were observed in simple mode (OR=1.031; 95%CI: 0.780-1.361, P=0.835), weighted mode (OR=1.120; 95%CI: 0.944-1.328, P=0.229), simple median (OR=1.003; 95%CI: 0.839-1.197, P=0.977), weighted median (OR=1.078; 95%CI: 0.921-1.262, P=0.346), penalized weight median (OR 1.078; 95%CI: 0.919-1.264, P=0.351), and MR-Egger method (OR=1.360; 95%CI: 0.998-1.853, P=0.092). There was no heterogeneity in the IVW and MR-Egger analyses (Q=7.454, P=0.489 and Q=3.901, P=0.791, respectively). MR-Egger regression revealed no evidence of a pleiotropic influence through genetic variants (intercept: -0.004; P=0.101). The leave-one-out sensitivity analysis indicated no driven influence of any individual SNP on the association between periodontitis and osteoporosis. The Mendelian randomization analysis did not show a significant detrimental effect of periodontitis on the risk of osteoporosis.

SELECTION OF CITATIONS
SEARCH DETAIL