Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
J Hazard Mater ; 477: 135267, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39047552

ABSTRACT

Developing multifunctional materials for water treatment remains a significant challenge. Bacterial cellulose (BC) holds immense potential as an adsorbent with high pollutant-binding capacity, hydrophilicity, and biosafety. In this study, N-acetylglucosamine was used as a carbon source to ferment BC, incorporating amide bonds in situ. Bentonite, renowned for its adsorption properties, was added to the culture medium, resulting in BC-bentonite composite membranes via a one-step fermentation process. Polyethyleneimine (PEI) was crosslinked with amide bonds on the membrane via glutaraldehyde through Schiff base reactions to enhance the performance of the composite membrane. The obtained membrane exhibited increased hydrophilicity, enhanced active adsorption sites, and enlarged specific surface area. It not only physically adsorbed contaminants through its unique structure but also effectively captured dye molecules (Congo red, Methylene blue, Malachite green) via electrostatic interactions. Additionally, it formed stable complexes with metal ions (Cd²âº, Pb²âº, Cu²âº) through coordination and effectively adsorbed their mixtures. Moreover, the composite membrane demonstrated the broad-spectrum antibacterial activity, effectively inhibiting the growth of tested bacteria. This study introduces an innovative method for fabricating composite membranes as adsorbents for complex water pollutants, showing significant potential for long-term wastewater treatment of organic dyes, heavy metal ions, and pathogens.

2.
BMC Oral Health ; 24(1): 668, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849764

ABSTRACT

BACKGROUND: Crohn's disease (CD)-associated periodontitis is common. However, the role of periodontal pathogens in the Coexistence of CD and periodontal disease remains unclear. METHODS: To investigate the potential relationship mediated by periodontal pathogens between periodontitis and CD, we collected salivary samples from healthy participants (H group, n = 12), patients with CD (Ch group, n = 10), patients with periodontitis (Ps group, n = 12), and patients with Coexistence of CD and periodontal disease (Cp group, n = 12) and analyzed them by 16 S rRNA sequencing. RESULTS: Patients with Coexistence of CD and periodontal disease had increased levels of Fusobacterium, Actinomyces, Leptotrichia, and Prevotella, which correlated with the severity of periodontitis. Conversely, the levels of Streptococcus, Neisseria, Haemophilus, and Gemella, which decreased in Coexistence of CD and periodontal disease, were negatively correlated with the severity of periodontitis. To further investigate the role of periodontal pathogens in CD development, representative periodontal pathogens causing periodontitis, Porphyromonas gingivalis and Fusobacterium nucleatum, were administered to mice. These pathogens migrate to, and colonize, the gut, accelerating CD progression and aggravating colitis, and even systemic inflammation. In vitro experiments using a Caco-2/periodontal pathogen coculture revealed that P. gingivalis and F. nucleatum increased intestinal permeability by directly disrupting the tight junctions of intestinal epithelial cells. CONCLUSION: Our findings strongly suggest that periodontal pathogens play a role in the relationship between periodontitis and CD. These results provide a basis for understanding the pathogenesis of Coexistence of CD and periodontal disease and may lead to the development of novel therapeutic strategies.


Subject(s)
Crohn Disease , Fusobacterium nucleatum , Periodontitis , Porphyromonas gingivalis , Humans , Crohn Disease/microbiology , Crohn Disease/complications , Periodontitis/microbiology , Periodontitis/complications , Animals , Mice , Male , Female , Adult , Fusobacterium nucleatum/isolation & purification , Caco-2 Cells , Saliva/microbiology , RNA, Ribosomal, 16S
3.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38809113

ABSTRACT

We present a superheterodyne-scheme demodulation system that can detect the amplitude and phase shift of weak radio frequency signals with extraordinarily high stability and resolution. As a demonstration, we introduce a process to measure the velocity of the surface acoustic wave using a delay-line device from 30 K to room temperature, which can resolve <0.1 ppm velocity shift. Furthermore, we investigate the possibility of using this surface acoustic wave device as a calibration-free, high sensitivity, and fast response thermometer.

4.
Steroids ; 207: 109434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710261

ABSTRACT

Steroid myopathy is a non-inflammatory toxic myopathy that primarily affects the proximal muscles of the lower limbs. Due to its non-specific symptoms, it is often overshadowed by patients' underlying conditions. Prolonged or high-dosage use of glucocorticoids leads to a gradual decline in muscle mass. There are no tools available to identify the course of steroid myopathy before the patient displays substantial clinical symptoms. In this study, we investigated individuals with nephrotic syndrome receiving prednisone who underwent muscle ultrasound to obtain cross-sectional and longitudinal pictures of three major proximal muscles in the lower limbs: the vastus lateralis, tibialis anterior, and medial gastrocnemius muscles. Our findings revealed that grip strength was impaired in the prednisolone group, creatine kinase levels were reduced within the normal range; echo intensity of the vastus lateralis and medial gastrocnemius muscles was enhanced, the pennation angle was reduced, and the tibialis anterior muscle exhibited increased echo intensity and decreased thickness. The total dose of prednisone and the total duration of treatment impacted the degree of muscle damage. Our findings indicate that muscle ultrasound effectively monitors muscle structure changes in steroid myopathy. Combining clinical symptoms, serum creatine kinase levels, and grip strength improves the accuracy of muscle injury evaluation.


Subject(s)
Muscle, Skeletal , Nephrotic Syndrome , Prednisone , Ultrasonography , Humans , Male , Prednisone/adverse effects , Prednisone/administration & dosage , Female , Adult , Middle Aged , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/diagnostic imaging , Nephrotic Syndrome/chemically induced , Muscle, Skeletal/drug effects , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/chemically induced , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology
5.
J Hazard Mater ; 472: 134516, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714056

ABSTRACT

There are many heavy metal stresses in agricultural biological systems, especially cadmium (Cd) stress, which prevent the full growth of plants, lead to a serious decline in crop yield, and endanger human health. Molybdenum (Mo), an essential nutrient element for plants, regulates plant growth mainly by reducing the absorption of heavy metals and protecting plants from oxidative damage. The aim of this study was to determine the protective effect of Mo (1 µM) application on wheat plants under conditions of Cd (10 µM) toxicity. The biomass, Cd and Mo contents, photosynthesis, leaf and root ultrastructure, antioxidant system, and active oxygen content of the wheat plants were determined. Mo increased the total chlorophyll content of wheat leaves by 43.02% and the net photosynthetic rate by 38.67%, and ameliorated the inhibitory effect of cadmium on photosynthesis by up-regulating photosynthesis-related genes and light-trapping genes. In addition, Mo reduced the content of superoxide anion (O2•-) by 16.55% and 31.12%, malondialdehyde (MDA) by 20.75% and 7.17%, hydrogen peroxide (H2O2) by 24.69% and 8.17%, and electrolyte leakage (EL) by 27.59% and 16.82% in wheat leaves and roots, respectively, and enhanced the antioxidant system to reduce the burst of reactive oxygen species and alleviate the damage of Cd stress on wheat. According to the above results, Mo is considered a plant essential nutrient that enhances Cd tolerance in wheat by limiting the absorption, accumulation and transport of Cd and by regulating antioxidant defence mechanisms. ENVIRONMENTAL IMPLICATION: Cadmium (Cd),is one of the most toxic heavy metals in the environment, and Cd pollution is a global environmental problem that threatens food security and human health. Molybdenum (Mo), as an essential plant nutrient, is often used to resist environmental stress. However, the mechanism of Mo treatment on wheat subjected to Cd stress has not been reported. In this study, we systematically analysed the effects of Mo on the phenotype, physiology, biochemistry, ultrastructure and Cd content of wheat subjected to Cd stress, and comprehensively analysed the transcriptomics. It not only reveals the mechanism of Mo tolerance to Cd stress in wheat, but also provides new insights into phytoremediation and plant growth in Cd-contaminated soil.


Subject(s)
Cadmium , Molybdenum , Photosynthesis , Plant Leaves , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/genetics , Cadmium/toxicity , Molybdenum/toxicity , Plant Leaves/drug effects , Plant Leaves/metabolism , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Soil Pollutants/toxicity , Antioxidants/metabolism , Transcriptome/drug effects , Chlorophyll/metabolism , Hydrogen Peroxide , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Gene Expression Regulation, Plant/drug effects
6.
Anal Chim Acta ; 1304: 342553, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637054

ABSTRACT

BACKGROUND: The human immunodeficiency virus (HIV) remains a major worldwide health problem. Nowadays, many methods have been developed for quantitative detecting human immunodeficiency virus DNA (HIV-DNA), such as fluorescence and colorimetry. However, these methods still have the disadvantages of being expensive and requiring professional technicians. Early diagnosis of pathogens is increasingly dependent on portable instruments and simple point-of-care testing (POCT). Therefore, it is meaningful and necessary to develop portable and cheap methods for detecting disease markers. RESULTS: In this work, a label-free chemiluminescence (CL) method was developed for detecting HIV-DNA via a handheld luminometer. To achieve label-free target detection, the CL catalyst, G-triplex-hemin DNAzyme (G3-hemin DNAzyme), was in-situ assembled in the presence of HIV-DNA. For improving sensitivity, HIV-DNA induced the cyclic strand displacement reaction (SDR), which can form three G3-hemin DNAzymes in one cycle. So, the chemiluminescence reaction between luminol and H2O2 was highly effectively catalyzed, and the CL intensity was linearly related with the concentration of HIV-DNA in the range of 0.05-10 nM with a detection limit of 29.0 pM. Due to the high specificity of hairpin DNA, single-base mismatch can be discriminated, which ensured the specific detection of HIV-DNA. SIGNIFICANCE: In-situ formation of G3-hemin DNAzyme led to label-free and selective detection without complex synthesis and functionalization. Therefore, it offers a cheap, selective, sensitive and portable method for detecting disease-related genes, which is promising for POCT of clinical diagnosis in resource-limited settings.


Subject(s)
Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , HIV Infections , Humans , DNA, Catalytic/metabolism , Hemin , Hydrogen Peroxide , Luminescent Measurements/methods , DNA/genetics , HIV Infections/diagnosis , Biosensing Techniques/methods , Limit of Detection
7.
Clin. transl. oncol. (Print) ; 26(4): 808-824, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-VR-45

ABSTRACT

Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.(AU)


Subject(s)
Humans , Male , Female , Neoplasms/drug therapy , Thyroid Neoplasms/drug therapy , /genetics , Class Ia Phosphatidylinositol 3-Kinase
8.
Phys Rev Lett ; 132(7): 076501, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427873

ABSTRACT

Transport measurement, which applies an electric field and studies the migration of charged particles, i.e., the current, is the most widely used technique in condensed matter studies. It is generally assumed that the quantum phase remains unchanged when it hosts a sufficiently small probing current, which is, surprisingly, rarely examined experimentally. In this Letter, we study the ultra-high-mobility two-dimensional electron system using a propagating surface acoustic wave, whose traveling speed is affected by the electrons' compressibility. The acoustic power used in our Letter is several orders of magnitude lower than previous reports, and its induced perturbation to the system is smaller than the transport current. Therefore we are able to observe the quantum phases become more incompressible when hosting a perturbative current.

9.
Materials (Basel) ; 17(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38541519

ABSTRACT

Ground Granulated Blast-Furnace Slag (GGBS) and silica fume (SF) are frequently utilized in gel materials to produce environmentally sustainable concrete. The blend of the two components contributes to an enhancement in the pore structure, which, in turn, increases the mechanical strength of the material and the compactness of the pore structure and decreases the permeability, thereby improving the durability of the concrete. In this study, the pore structures of GGBS and SF blends are assessed using Nuclear Magnetic Resonance (NMR) and Mercury Intrusion Porosimetry (MIP) tests. These methodologies provide a comprehensive evaluation of the effect of GGBS and SF on the pore structure of cementitious materials. Results showed that the addition of SF and GGBS reduces the amount of micro-capillary pores (10 < d < 100 nm) and the total pore volume. The results indicate that the transport properties are related to the pore structure. The incorporation of SF reduced the permeability of the concrete by an order of magnitude. The pore distribution and pore composition had a significant effect on the gas permeability. The difference in porosity obtained using the MIP and NMR tests was large due to differences in testing techniques.

10.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38479316

ABSTRACT

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Subject(s)
Brassica , Seedlings , Chlorophyll/metabolism , Carbon/metabolism , Fluorescence , Photosynthesis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Brassica/metabolism
11.
Front Immunol ; 15: 1308543, 2024.
Article in English | MEDLINE | ID: mdl-38433845

ABSTRACT

Background: This study evaluates the efficacy of alpha-fetoprotein (AFP) response as a surrogate marker for determining recurrence-free survival (RFS) in patients with unresectable hepatocellular carcinoma (uHCC) who undergo salvage hepatectomy following conversion therapy with tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody-based regimen. Methods: This multicenter retrospective study included 74 patients with uHCC and positive AFP (>20 ng/mL) at diagnosis, who underwent salvage hepatectomy after treatment with TKIs and anti-PD-1 antibody-based regimens. The association between AFP response-defined as a ≥ 80% decrease in final AFP levels before salvage hepatectomy from diagnosis-and RFS post-hepatectomy was investigated. Results: AFP responders demonstrated significantly better postoperative RFS compared to non-responders (P<0.001). The median RFS was not reached for AFP responders, with 1-year and 2-year RFS rates of 81.3% and 70.8%, respectively. In contrast, AFP non-responders had a median RFS of 7.43 months, with 1-year and 2-year RFS rates at 37.1% and 37.1%, respectively. Multivariate Cox regression analysis identified AFP response as an independent predictor of RFS. Integrating AFP response with radiologic tumor response facilitated further stratification of patients into distinct risk categories: those with radiologic remission experienced the most favorable RFS, followed by patients with partial response/stable disease and AFP response, and the least favorable RFS among patients with partial response/stable disease but without AFP response. Sensitivity analyses further confirmed the association between AFP response and improved RFS across various cutoff values and in patients with AFP ≥ 200 ng/mL at diagnosis (all P<0.05). Conclusion: The "20-80" rule based on AFP response could be helpful for clinicians to preoperatively stratify the risk of patients undergoing salvage hepatectomy, enabling identification and management of those unlikely to benefit from this procedure.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Prognosis , Carcinoma, Hepatocellular/surgery , Retrospective Studies , alpha-Fetoproteins , Hepatectomy , Liver Neoplasms/surgery
12.
Mol Clin Oncol ; 20(4): 29, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38414510

ABSTRACT

Anti-programmed cell death 1 immuno-monotherapy has become the second-line standard treatment for advanced esophageal squamous cell carcinoma (ESCC) after the failure of first-line chemotherapy. However, new biomarkers are still needed to identify patients at risk of tumor progression and to select patients with advanced ESCC who are likely to benefit from immunotherapy. A total of 12 patients with advanced ESCC treated with tislelizumab were prospectively enrolled and endoscopic biopsy samples were collected. Plasma was obtained prior to and after every 2-3 treatment cycles with tislelizumab and when disease progression occurred. Targeted sequencing of 425 genes from plasma cell-free DNA, DNA from leukocytes and fixed esophageal tumor biopsies was performed. The patients underwent imaging analyses every 6-8 weeks until disease progression. The association between status of circulating tumor DNA (ctDNA) or changes in ctDNA following tislelizumab immunotherapy and response, tumor progression and survival was determined. All patients had evaluable next-generation sequencing results at the time of analysis. The results showed that patients with ESCC with liver metastasis had a significantly shorter median progression-free survival (mPFS: 1.4 vs. 11.7 months; P=0.037). TSC complex subunit 2 [11.7 months vs. not reached (NR); P=0.004] and zinc finger protein 217 (11.7 months vs. NR; P=0.022) gene mutations were the independent and negative prognostic factors for median overall survival (OS), respectively. Of note, ctDNA dynamic changes expressed as ∆ mutant molecules per milliliter of plasma (∆MMPM; MMPM detected at the first monitoring time-point after the first infusion of tislelizumab as baseline MMPM) predicted progression-free survival (PFS) and OS more accurately compared to the ctDNA change of an individual gene. ∆MMPM <20% was an independent predictor of PFS (2.8 vs. 14.6 months; P=0.029), although there was no significant difference for OS (16.7 vs. 17.6 months; P=0.830). In conclusion, changes in ctDNA levels were associated with anti-tumor effects, progression and disease-specific survival. ctDNA sequencing is promising for predicting response and progression after tislelizumab immunotherapy as second-line monotherapy for advanced ESCC [the present study was part of the RATIONALE-302 study (ClinicalTrials.gov identifier no. NCT03430843; 29.01.2018)].

13.
Lipids Health Dis ; 23(1): 63, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419057

ABSTRACT

BACKGROUND AND OBJECTIVE: Dyslipidemia is significantly more common in those with concurrent chronic kidney disease (CKD) and chronic heart failure (CHF). Sacubitril/valsartan has showcased its influence on both cardiac and renal functions, extending its influence to the modulation of lipid metabolism pathways. This study aimed to examine how sacubitril/valsartan affects lipid metabolism within the context of CKD and CHF. METHODS: This study adopted a retrospective design, focusing on a single center and involving participants who were subjected to treatment with sacubitril/valsartan and valsartan. The investigation assessed the treatment duration, with a particular emphasis on recording blood lipid indicators, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A (ApoA), and apolipoprotein B (ApoB). Furthermore, cardiac and renal functions, blood pressure, potassium levels, and other factors influencing the blood lipids were analyzed in both groups at identical time points. RESULTS: After 16 weeks of observation, the sacubitril/valsartan group exhibited lower TG levels compared to the valsartan group. Noteworthy was the fact that individuals undergoing sacubitril/valsartan treatment experienced an average reduction of 0.84 mmol/L in TG levels, in stark contrast to the valsartan group, which registered a decline of 0.27 mmol/L (P < 0.001). The sacubitril/valsartan group exhibited elevated levels of HDL-C and ApoA in comparison to the valsartan group (PHDL-C = 0.023, PApoA = 0.030). While TC, LDL-C, and ApoB decreased compared to baseline, the differences between groups were not statistical significance. Regarding cardiac indicators, there was an observed enhancement in the left ventricular ejection fraction (LVEF) within the sacubitril/valsartan group when compared to the baseline, and it was noticeably higher than that of the valsartan group. Spearman correlation analysis and multiple linear regression analysis revealed that medication, body mass index(BMI), and hemoglobin A1c (HbA1c) had a direct influencing effect on TG levels. CONCLUSION: Sacubitril/valsartan demonstrated improvements in lipid metabolism and cardiac indicators in patients with CKD and CHF. Specifically, it presented promising benefits in reducing TG levels. In addition, both BMI and HbA1c emerged as influential factors contributing to alterations in TG levels, independent of the administration of sacubitril/valsartan.


Subject(s)
Aminobutyrates , Heart Failure , Renal Insufficiency, Chronic , Humans , Retrospective Studies , Stroke Volume/physiology , Cholesterol, LDL , Glycated Hemoglobin , Lipid Metabolism , Tetrazoles/therapeutic use , Tetrazoles/pharmacology , Ventricular Function, Left/physiology , Valsartan/therapeutic use , Valsartan/pharmacology , Heart Failure/complications , Heart Failure/drug therapy , Biphenyl Compounds , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Drug Combinations , Apolipoproteins A/pharmacology , Apolipoproteins B , Apolipoproteins
14.
Horm Metab Res ; 56(5): 341-349, 2024 May.
Article in English | MEDLINE | ID: mdl-38224966

ABSTRACT

Glucocorticoid-induced myopathy is a non-inflammatory toxic myopathy typified by proximal muscle weakness, muscle atrophy, fatigue, and easy fatigability. These vague symptoms coupled with underlying disorders may mask the signs of glucocorticoid-induced myopathy, leading to an underestimation of the disease's impact. This review briefly summarizes the classification, pathogenesis, and treatment options for glucocorticoid-induced muscle wasting. Additionally, we discuss current diagnostic measures in clinical research and routine care used for diagnosing and monitoring glucocorticoid-induced myopathy, which includes gait speed tests, muscle strength tests, hematologic tests, bioelectrical impedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), electromyography, quantitative muscle ultrasound, histological examination, and genetic analysis. Continuous monitoring of patients receiving glucocorticoid therapy plays an important role in enabling early detection of glucocorticoid-induced myopathy, allowing physicians to modify treatment plans before significant clinical weakness arises.


Subject(s)
Glucocorticoids , Muscular Diseases , Humans , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Muscular Diseases/diagnosis , Muscular Diseases/chemically induced , Muscular Diseases/therapy
15.
Talanta ; 271: 125656, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38224658

ABSTRACT

Alzheimer's disease (AD) is a degenerative disease of the brain worldwide. Currently, there is no effective cure. But accurate and early diagnosis of AD is critical to the development of patient care and future treatments. MiRNA-16 has been considered as an effective diagnostic biomarker for AD because of its regulatory effect on key proteins of AD. Herein, a colorimetric lateral flow assay (LFA) was developed for sensitive detection of miRNA-16 based on entropy-driven catalysis (EDC) amplification strategy. MiRNA-16 triggered EDC and released more linker DNAs (LDNA) of sandwich structure. Thus, AuNPs were enriched at the T-line to enhance the colorimetric signal and improve the sensitivity of visual assay. It showed good specificity and sensitivity for detecting miRNA-16 with a detection limit of 1.01 pM. The practical detection of miRNA-16 in human serum obtained satisfactory result. Significantly, EDC achieved signal amplification in homogeneous solution without enzyme and DNA labeling, leading to a cheap and easy detection of miRNA-16. Therefore, it provided a portable and rapid assay for AD-related nucleic acid, which holds a potential for point-of-care testing (POCT) of AD.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Entropy , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry , Catalysis , Limit of Detection , Nucleic Acid Amplification Techniques
16.
Microb Biotechnol ; 17(2): e14394, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38226955

ABSTRACT

Corn straw is an abundant and renewable alternative for microbial biopolymer production. In this paper, an engineered Sphingomonas sanxanigenens NXG-P916 capable of co-utilising glucose and xylose from corn straw total hydrolysate to produce xanthan gum was constructed. This strain was obtained by introducing the xanthan gum synthetic operon gum as a module into the genome of the constructed chassis strain NXdPE that could mass produce activated precursors of polysaccharide, and in which the transcriptional levels of gum genes were optimised by screening for a more appropriate promoter, P916 . As a result, strain NXG-P916 produced 9.48 ± 0.34 g of xanthan gum per kg of fermentation broth (g/kg) when glucose was used as a carbon source, which was 2.1 times improved over the original engineering strain NXdPE::gum. Furthermore, in batch fermentation, 12.72 ± 0.75 g/kg xanthan gum was produced from the corn straw total hydrolysate containing both glucose and xylose, and the producing xanthan gum showed an ultrahigh molecular weight (UHMW) of 6.04 × 107 Da, which was increased by 15.8 times. Therefore, the great potential of producing UHMW xanthan gum by Sphingomonas sanxanigenens was proved, and the chassis NXdPE has the prospect of becoming an attractive platform organism producing polysaccharides derived from biomass hydrolysates.


Subject(s)
Glucose , Polysaccharides, Bacterial , Sphingomonas , Xylose , Sphingomonas/genetics , Zea mays , Molecular Weight
17.
Clin Transl Oncol ; 26(4): 808-824, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37864677

ABSTRACT

Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/ß-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.


Subject(s)
RNA, Circular , Thyroid Neoplasms , Humans , RNA, Circular/genetics , Phosphatidylinositol 3-Kinases , Thyroid Neoplasms/pathology , Prognosis
18.
Adv Healthc Mater ; 13(8): e2303216, 2024 03.
Article in English | MEDLINE | ID: mdl-38156501

ABSTRACT

Bacterial cellulose is an extracellular polysaccharide produced by microorganisms, offering advantages such as high water-holding capacity, flexibility, and biocompatibility. However, its lack of bactericidal activity hampers its wide application. Usnic acid, a secondary metabolite derived from lichens of the Usnea genus, is recognized for its antibacterial and anti-biofilm efficiency, coupled with anti-inflammatory properties. Its water insolubility presents challenges for wide utilization and stable release. Sanxan gel, a novel polysaccharide, exhibits exceptional freeze-thaw stability, suspension properties, and high elasticity, rendering it effective as a suspending agent to improve the bioavailability of water-insoluble drugs. In this study, a hydrogel membrane is designed by combining bacterial cellulose and usnic acid suspended in sanxan gel through a simple in situ microorganism fermentation. The obtained membranes demonstrate excellent ability for sustained drug release, strong eradication capability against tested bacteria in both in vitro and in vivo experiments, effective inhibition of biofilm formation, and excellent hemocompatibility and cytocompatibility. Additionally, the composite membranes promote wound healing with reduced inflammation and bacterial infection in a full-thickness wound infection model in mice. This study provides innovative insights and strategies for the development of functional dressings for infected wounds in future clinical applications.


Subject(s)
Cellulose , Hydrogels , Animals , Mice , Bacteria , Anti-Bacterial Agents , Water
19.
BMC Cancer ; 23(1): 1190, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053048

ABSTRACT

BACKGROUND: Routine clinical staging for hepatocellular carcinoma (HCC) incorporates liver function, general health, and tumor morphology. Further refinement of prognostic assessments and treatment decisions may benefit from the inclusion of tumor biological marker alpha-fetoprotein (AFP) and systemic inflammation indicator C-reactive protein (CRP). METHODS: Data from a multicenter cohort of 2770 HCC patients undergoing hepatectomy were analyzed. We developed the PACE risk score (Prognostic implications of AFP and CRP Elevation) after initially assessing preoperative AFP and CRP's prognostic value. Subgroup analyzes were performed in BCLC cohorts A and B using multivariable Cox analysis to evaluate the prognostic stratification ability of the PACE risk score and its complementary utility for BCLC staging. RESULTS: Preoperative AFP ≥ 400ng/mL and CRP ≥ 10 mg/L emerged as independent predictors of poorer prognosis in HCC patients who underwent hepatectomy, leading to the creation of the PACE risk score. PACE risk score stratified patients into low, intermediate, and high-risk groups with cumulative 5-year overall (OS) and recurrence-free survival (RFS) rates of 59.6%/44.9%, 43.9%/38.4%, and 20.6%/18.0% respectively (all P < 0.001). Increased PACE risk scores correlated significantly with early recurrence and extrahepatic metastases frequency (all P < 0.001). The multivariable analysis identified intermediate and high-risk PACE scores as independently correlating with poor postoperative OS and RFS. Furthermore, the PACE risk score proficiently stratified the prognosis of BCLC stages A and B patients, with multivariable analyses demonstrating it as an independent prognostic determinant for both stages. CONCLUSION: The PACE risk score serves as an effective tool for postoperative risk stratification, potentially supplementing the BCLC staging system.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , alpha-Fetoproteins/metabolism , C-Reactive Protein , Carcinoma, Hepatocellular/surgery , Cohort Studies , Hepatectomy , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Neoplasm Staging , Prognosis , Retrospective Studies
20.
Mikrochim Acta ; 190(11): 454, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37910317

ABSTRACT

Nucleic acid lateral flow assay (NALFA) with gold nanoparticles (AuNPs) as colorimetric probes have been extensively adopted for point-of-care testing (POCT). However, the sensitivity of NALFA still needs to be improved. Herein, DNA-gold nanoaggregate (DNA-AuNA) was assembled as a signal amplification probe of NALFA for sensitive detection of tumor marker TK1 mRNA. Four functional oligonucleotides with complementary pairs were assembled to form DNA-AuNA that coupled more AuNPs to improve sensitivity. Thus, the limit of detection (LOD) was 0.36 pM, which is lower than that of conventional AuNPs-based NALFA. Moreover, the bioassay showed good reproducibility, stability, and specificity for detecting TK1 mRNA. The detection of TK1 mRNA in human serum was also satisfactory. Therefore, DNA-AuNA-based NALFA provides a sensitive method for portable detection of TK1 mRNA.


Subject(s)
Gold , Metal Nanoparticles , Humans , Reproducibility of Results , DNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL